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Introduction

In recent years, compressive sensing was an enormous breakthrough in the signal pro- 
cessing community as a successful sampling and reconstruction method for signals in 
various areas. The idea of using a small number of randomly positioned observations 
for signal acquisition improves efficiency of signal processing systems in terms of stor- 
age, memory, and transmission. Accurate recovery of signals with a reduced set of 
measurements is the primary goal of compressive sensing and sparse signal process- 
ing. Defining the domain of sparsity of a signal is the first step to be considered for 
application of compressive sensing to a specific signal. Each of the signals and their 
sparsity domains has characteristics that are important for defining the method that 
should be used for their proper recovery. Many signals can be represented as sparse in 
some representation domain, resulting in compressive sensing showing a huge potential 
originally in medicine, and then later in many other fields, such as communications, 
meteorology, remote sensing, image processing, and radar and sonar systems.

Although very successful, the idea of compressive sensing is still challenging for 
research and developing in many application areas, including the underwater acoustics 
field. Acoustic signals transmission through the water introduce many complex charac- 
teristics that are very difficult for analysis. Most of the problems occur in the process 
of transmitting and receiving signals in water due to its dispersive media properties. 
This is especially exhibited in shallow water environments, as a representative exam- 
ple of dispersive channels. The dispersivity produces multiple nonlinear components, 
changing the very nature of the original transmitted signals. The non-stationary nature 
of such signal components makes them suitable for the analysis using time-frequency 
tools.

In the compressive sensing sense, non-stationary signals are only approximately 
sparse or nonsparse in the most of the common transformation domains. Such sig- 
nals, when reconstructed under the sparsity assumption, will produce errors in the 
reconstruction procedure. This error highly depends on the sampling method and the 
sparsity domain of the analyzed signal. The exact error is of great importance for 
further improvement of the reconstruction performance in prospective. Except for the 
dispersive systems, time-varying nonsparse signals can also be found in the process- 
ing of many other areas, such as audio signals, images, radar systems, and wideband 
sonar images, where the processing under the sparsity assumption requires appropriate 
analysis of the reconstruction results.

The problem of approximative sparsity is intrinsically built in the area of compres- 
sive sensing based reconstruction of targets in sonar images. In real-world cases, the 
sonar signals are positioned off-grid in the transformation domain, which makes them 
nonsparse in their nature. The problem of finding a sequence suitable for the transmis- 
sion, as well as developing the proper theory behind the detection and reconstruction 
of targets, is a topic of great importance for theory and practice in sonar systems.

1



2 Introduction

Considering that only a few target points (or few targets) commonly are of interest in 
the sonar images, the idea of compressive sensing can successfully be applied in their 
reconstruction. The compressive sensing methods can be suited and used for effective 
localization of the underwater targets in sonar systems.

The dispersive characteristics of the underwater environment is of crucial impor- 
tance in the underwater acoustics and signal processing. A typical example of a dis- 
persive media is the shallow water environment since most activities are performed 
in waters with depth less than 200 meters. From the signal processing view, a dis- 
persive channel introduces many complex nonstationary components during the signal 
transmission. It is essential to recognize, decompose, and reconstruct such components 
(modes) truthfully, for a better understanding of the environment in which the signal 
is transmitted. Although challenging, the theory of compressive sensing with appropri- 
ate transformation domain, adjusted to the complex nature of the signal modes, can 
provide an effective reconstruction of the strongest modes.

Three key problems which are considered in this thesis are:

1. exact error calculation in the reconstruction procedure in compressive sensing 
(only error bounds were given in the existing literature);

2. reconstruction of sonar images within the compressive sensing framework using 
various sequences for transmitted signal (so far only basic sequence forms were 
used in the literature, applied to real data);

3. the problem of decomposition of signals in dispersive channels (with a robust 
method for such a requirement).

One of the aims of this thesis is to fulfill the gaps of using the compressive sensing 
techniques in underwater acoustics and sonar systems with appropriate and exact re- 
construction performance analysis, which can also serve as a basis for a further direction 
in implementation of these techniques in other signal processing fields.

The contribution of this thesis can be divided into three major parts:

• Analysis o f  nonsparsity -  Many signals, especially non-stationary and signals 
arriving from a dispersive environment are not strictly sparse in their correspond- 
ing representation domains. They should be considered as approximately sparse or 
nonsparse signals, meaning that all components cannot be exactly reconstructed 
with compressive sensing methods. The expected reconstruction error caused by 
the nonreconstructed components is derived and exactly calculated. This helps 
further investigation on the quality of the reconstruction of various signals. The 
problem of quantization (digitization) of measurements is considered within the 
context of additive noise and signal nonsparsity.

• R econstruction  o f  sonar signals -  The wideband sonar images can be re- 
constructed using different sequence forms. An extensive analysis of different 
sequence forms within the compressive sensing reconstruction framework is done
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with appropriate comparison and directions how to achieve an improved recovery 
of sonar images. The time-varying cross-range, as a challenging topic that causes 
sonar image smearing, was additionally analyzed, as a complex parameter in the 
analysis of such signals. Gathering of real data and their reconstruction helped 
further justification of the presented analysis.

• Sparse decom position  o f  signals in dispersive channels -  A novel approach 
to the decomposition of signals received in the dispersive channel is introduced. 
The method is based on the time-frequency representations derived from polyno- 
mial extension of Fourier transform. High-resolution and model-based techniques 
are considered for the analysis of received signals in such channels.

The methods presented for sonar imaging can be applied to general problems in 
image processing. A method for denoising and reconstruction of sparse images based 
on a gradient-descent algorithm is developed as an example. Unlike common image 
reconstruction methods, the advantage of this method is that the uncorrupted pixels 
remain unchanged in the reconstruction process. The noisy pixels are blindly detected 
and reconstructed using compressive sensing approach by assuming (and not explicitly 
imposing) the image sparsity.

The thesis is organized as follows. The background theory on signal processing and 
the compressive sensing theory are presented in Chapter 2. The analysis of nonspar- 
sity, together is presented in Chapter 3. Chapter 4 presents the analysis of different 
sequences and their application in compressive sensing, for a successful reconstruction 
of sonar signals. The background of shallow water environment, together with the 
techniques for sparse decomposition of the received signals in dispersive channels is an- 
alyzed in Chapter 5. Additional work on the topic of image denoising using compressive 
sensing techniques is introduced in the Chapter 6. Chapter 7 concludes the thesis, with 
the brief description of presented results and discussion on future work.
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Signal processing, as such, was introduced in the 1960s, and became one of the most 
important tools for the analysis of signals and corresponding information. Although 
introduced in the 20th century, the basics on which the analysis lies are mathematical 
formulations known for many centuries earlier. Its use is mostly related to the introduc- 
tion of computers we know today (such as the Fourier series and transform). However, 
due to their rapid development, the digitalization of the world is inevitable. The data 
which should be stored became massive. That is why the techniques developed earlier 
are helpful, yet not enough. In recent years, it has been seen that numerous signals 
are of sparse nature in a specific representation domain. New technologies have been 
introduced, based on compressing those signals and trying to keep the original infor- 
mation in their full meaning. These technologies can be summarized under the theory 
of compressive sensing, which is based on sparse signal processing.

In this Chapter the fundamental theory and notations used throughout this thesis 
are presented. The basics of signals and their representations in a transformation 
domain are introduced with the method of time-varying signals. It also introduces the 
background of compressive sensing and sparse signal processing. A basic yet effective 
reconstruction algorithm, which will be used through the thesis, is explained. Finally, 
the conditions necessary for a successful and unique reconstruction of sparse signals are 
presented.

5
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1.1 Signal representation

Consider a time-domain signal x(t) of duration Ts. Its samples x(nAt) are within the 
sampling interval A t =  Ts/N. The sampling interval satisfies the traditional sampling 
theorem. The traditional sampling theorem was introduced in few occasions [1-4 ], and 
states that a signal can be fully recovered if its sampling frequency f s is at least twice 
as high as the maximum signal frequency f max, i.e.

f s > 2f m a x . (1.1)

Any discrete one-dimensional signal x(n) =  x(nAt) of length N , n =  0 , 1 , . . . , N  — 1, 
can be written in the vector form as

x  =  [x(0),x(1), . . . , x ( N — 1)]T ̂ (1.2)

where T is the transpose operation. Examples of one-dimensional signals can be found 
in a large number of everyday applications, including audio, speech, sonar, radar, vari- 
ous environment sensing and biomedical signals (such as the electrocardiogram - ECG 
and electroencephalogram - EEG).

The sampling theory can be extended to two-dimensional signals. Examples of 
two-dimensional signals are photos, radar/sonar images, biomedical images (such as 
magnetic resonance imaging - MRI), and many others. A two-dimensional signal of 
size N x M  is represented in a matrix form as

x

x(0,0) x (0 ,1)
x(1, 0) x(1, 1)

x(0, M  — 1) 
x(1, M  — 1)

x(N  — 1, 0) x (M  — 1,1) x (N — 1, M  — 1)

(1.3)

In the two-dimensional case, the sampling frequency has to satisfy the sampling relation 
for each considered sampling direction.

In the theory, signals are commonly analyzed and processed in a certain represen- 
tation (transformation) domain. Depending on its nature, the transform is suited for 
a specific type of the signal. The most common transformation domains are the dis- 
crete Fourier transform (DFT), discrete wavelet transform (DWT), and discrete cosine 
transform (DCT). For the case of radar and sonar signals, the representation domains 
are related to specific sequences that will be explained along with this application field.

In general, the transformation of a one-dimensional signal from one domain to 
another one can be presented using the matrix relations

X  =  $ x

where $  is the transformation matrix and X  is the signal transform vector

X  = [ X  ( 0 ) , X ( 1 ) , . . . , X ( N  — 1)]T,

(1.4)

(1.5)
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considering the length to be N . The inverse transform provides the relation between 
the transformation and the signal as

x  = &  X  =  $ -1X  (1.6)

with the common orthonormal transformation domains relation $ -1 =  $ H, where 
H is the complex-conjugate and transpose (Hermitian) matrix. In general, the full
transformation and inverse transformation matrices are given by

00(0) 0 1(o) ••• 0N-1(0)

$  = 00(1) 0 1(1) ••• 0N-1(1)
, (1.7)

00 (N -  1) 01 (N -  1) ••• i ^
 ' 1 I—1

1__
__

and
00(o) 0 1(o) ••• 0N-1(0)

^  =
0(1) 0 1(1) ••• 0N-1(1)

. (1.8)

00 (N -  1) 01 (N -  1) ••• 1 ^
 ' 1 I—1

1

These matrices depend on the type of the transformation used for a particular signal.

1.1.1 Discrete Fourier transform  (D F T )

The most frequently used transformation domain in the field of signal processing is 
the discrete Fourier transform, named after the mathematician Joseph Fourier (1768- 
1830). The basis functions are harmonic signals, allowing analysis of signals in the 
corresponding spectral domain. The DFT form, for a discrete-time signal x(n), is given 
by

N-1 N-1
X (k) =  ^  x(n)0k(n) =  ^  x(n)e- j 2wnk/N. (1.9)

n=0 n=0
Its inverse is

N-1 i N-1
x(n) =  Y l  X (k)Vn (k) =  X (k)ej2' nk/N

k=0 k=0
(1.10)

Note that the relation between the DFT and the inverse DFT coefficients is given by 
-ipn(k) =  4>k(n)/N or ^  =  $ H/N .

The two-dimensional extension of the DFT is defined by
N-1 M-1

X (k,l) =  Y  x(n,m)e- j2™k/Ne- j2nml/M (1.11)
n=0 m=0

with the corresponding inverse transform

x(n, m)
1 1
N M

N-1 M-1
E E  X (k l)ej2wnk/Nej2̂ ml/M
k=0 l=0

(1.12)
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The transformation coefficients e- j2nnk/Ne- j2nmi/M are foUr_dimensional, since they 
depend on four indices (n,m,k,l). In order to use the standard derivations and opti_ 
mization algorithms, as well as for notation simplification, the two_dimensional signals 
and transformation matrices are commonly rearranged into column matrices by layering 
its columns after each other in a way that

x(n +  N (m — 1)) =  x(n,m), (1.13)
X  (k +  M (l — 1)) =  X  (k,l), (1.14)

where n =  0,1, . . . , N — 1, m =  0,1 , . . . , M — 1, k =  0 , 1 , . . . , N —1, and l =  0,1 , . . . , M — 
1. Then, the four_dimensional transformation forms of coefficients are rewritten as large 
two_dimensional matrices.

1.1.2 Tim e-varying signals

The signals whose spectral content happens to change through time, are considered 
as time_varying or non_stationary signals [5-7 ]. Audio signals or signals transmitted 
through a dispersive channel are representative examples of time_varying signals. For 
their analysis, more complex transforms than the standard DFT must be used. These 
transforms should adapt for signal changes in both time and frequency domains, simul_ 
taneously.

Consider a time_varying signal x(n) with C components,

C
x(n) =  ^ 2  Xc (n), (1.15)

c= 1

where xc (n), c =  1,2 , . . . , C ,  are the non_stationary signals. Commonly, time_varying 
signals are localized in time by using a window function defined by w(nw). The basic 
linear time_frequency representation is a direct extension of the DFT of a windowed 
signal, and it is referred to as the short_time Fourier transform (STFT). It is calculated 
as the standard DFT applied to the windowed signal around the instant n. That is, 
the signal x(n +  nw) at n (and around it) is multiplied by a window w(nw). Its DFT 
is then found as

Nw/2-1
SSTFT(n  ̂k) D FT{x(n +  nw)w(nw)}  E x(n +  nw)w(nw)e j2wnwk/Nw (1.16)

nw = Nw /2

positioned at an instant n, a frequency k, windowed by w(nw) of length Nw. The window 
function can be a rectangular, Hamming, Hanning, or any other window introduced in 
the literature [8]. The indices nw that vary from — Nw/2  to Nw/2  — 1 will be used. 
Similar results would be obtained when the index values vary from 0 to Nw — 1 (due 
to the DFT periodicity). If the STFT, for a given instant n, is arranged into a vector 
form, the coefficients can be denoted by SSt f t (n).
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The STFT represents a simple and robust tool for time-varying signal analysis. 
As mentioned, the main difference from the standard DFT is in introducing the time 
localization window. If this window is narrow, then more localized properties in the time 
domain, around the considered instant n , are obtained. However, narrow windows have 
poor frequency resolution, meaning that a compromise should be made. Many efforts 
have be done in literature to find the optimal window width for a given signal which 
would produce a good localization in the time domain, with a sufficiently high frequency 
resolution. For more complex signals, with fast changes of the spectral content, a 
suitable window can be found using, for example, the approach presented in [9]. In 
order to elevate the resolution problem more sophisticated quadratic representations 
are introduced in time-frequency analysis. The goal of those representations is to track 
spectral changes more accurately, preferably without using a localization window.

The most prominent representation of quadratic time-frequency representations is 
the Wigner distribution whose discrete-time form is calculated as

N/2
S(n, k) =  2 ^  x(n + nw)x*(n — nw)e~ j4:Wnw k/N. (1.17)

nw =- N/2

It can track linear changes in the frequency of signal components without any window. 
In order to limit the computation interval, a window is introduced in this distribution 
as well. This distribution is then defined as the pseudo Wigner distribution (PWD) of 
the form

N/2
Spwo(n,k) =  2 ^  w(nw/2)w(—nw/ 2)x (n +  nw )x * (n — nw )e - j4wnw k/N. (1.18)

nw = - N/2

Although a window is present (as in the case of STFT), its only purpose in PWD is 
to limit the calculation interval. This means that the window is not crucial for the 
spectral localization of the presentation. For such reasons, the PWD is used for signals 
with fast spectral variations. However, the PWD is a quadratic distribution since it is 
calculated as the DFT of the product x (n +  nw/ 2)x * (n — nw/ 2). For a multicomponent 
signal, we will have the product of different components x c(n +  nw/ 2)x * (n — nw/ 2) for 
c =  s. The DFT of these products will appear in the time-frequency representation as 
new components (cross-terms) and can sometimes overlap with desirable auto-terms.

A simple way to keep the good properties of the PWD, while avoiding or reducing 
cross-terms can be achieved by using the S-method (SM)

ls m

Ssm (n ,k )=  ^ 2  Sstft (n,k +  p)S*sTFT (n,k — p) (1.19)
P=- LS M

where 2LSM +  1 is the width of the window in the spectral domain. Two of the most 
widely used representations (STFT and PWD) can be obtained from the S-method as
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its special cases [9]. That is, when L SM =  0 , the squared modulus of the standard 
STFT (i.e. spectrogram), is

Sspectrogram{,n,k') | SSTFT (n ; k)| j (1.20)

while for 2LSM +  1 =  Nw the standard PWD is obtained. The optimal representation 
is obtained by adding the terms for p =  0, ±1 , ± 2 , . . .  which improve the representa- 
tion from the STFT toward the PWD, until the cross-terms start to appear [9]. This 
effect can be detected by using measures of concentration of time-frequency represen- 
tations. One such measure was based on norm-one and was introduced for measuring 
and optimizing time-frequency representation finding the minimum of

N-l
||SSTFT(ni k)||l =  \Sstft (n,k)\

k=0
(1.21)

with respect to the window length. In this case

min n  ̂,Lsm ||Ssm (n,k)||i (1.22)

produces optimal representation. It is interesting to note that this kind of minimization 
is used in compressive sensing for sparse signal reconstruction [10-13]. This will be 
reviewed in the next section.

1.2 Compressive sensing and sparse signal processing

Many signals in the nature exhibit sparsity property in a transformation domain. This 
fact brought the idea of developing the compressive sensing technique, which was in- 
troduced in data processing as such by Donoho, Candes, and Baraniuk [14-18].

A signal wtih small number of nonzero components, in comparison to the total 
length of the signal, in a transformation domain is described as sparse. It is defined by 
Definition 1.1.

Definition 1.1
A signal x(n) of length N is K -sparse in a transformation domain if it consists 
of K  nonzero components in the corresponding domain, K  ^  N , at positions K  2 
{k U k2> . . .  kK}, and zero-valued components everywhere else,

x  ( k ) = { Ak = 0
for k 2 K 
otherwise (1.23)

where Ak are the amplitudes of the components at positions k 2 K, which can be 
complex-valued.
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1.2.1 M easurem ents o f  sparse signals

Unlike the traditional sampling theorem, one of the main advantages of sparse sig- 
nal processing is that such signals can be recovered using a reduced number of NA 
observations. The measurements are defined in Definition 1.2.

Definition 1.2
A measurement of sparse coefficients X (k) , k =  0, 1, . . . , N  — 1, is obtained as their 
Unear combination N-1

y (i) =  Y l ak (i)X  (k) > (1.24)
k=0

where ak(i), k =  0, 1, . . . , N  — 1, are the weighting coefficients for the i-th measurement, 
i =  0, 1 , . . . , N a — 1.

The aim of recovering sparse signals with a reduced set of samples/measurements/observations 
had a wide range of interest in the recent literature [19-23]. The theory stating this fact 
is known as compressive sensing (CS), developed under the framework of sparse signal 
processing (SSP). Notice that we can relate the general form of measurements, defined 
by (1.24), with signal samples defined by (1.10). Comparing these two relations, we 
can state that a signal sample, at one instant n ,̂ can be seen as the measurement of 
X (k) with

N-1
y (i) =  x(n)  =  £  e-j2™ik/NX(k),  (1.25)

k=0
where the weighting coefficients are the DFT transform coefficients, i.e.

ak (i) =  e-j2wnik/N. (1.26)

A reduced set of measurements, within this context, can be considered as the re- 
duced number of signal samples. The difference between the sampling by the traditional 
sampling theorem and by compressive sensing is shown in Fig. 1.1, where only Na =  32 
samples are used for the analysis, instead of the full set of measurements N =  128.

The main objective of CS and SSP is to desirably reduce the number of acquisi- 
tion samples/observations/measurements used for the signal sensing, transmission, and 
storying. Besides that, the small number of available measurements or signal samples 
can be the consequence of other physical restrictions in the considered system. It could 
also be a result of unavailable samples due to high corruption of some signal samples 
or parts of the signal. All of these scenarios will be considered in the thesis, since the 
formal mathematical framework is similar.

1.2.2 M easurem ent m atrix

The measurement matrix consists of the coefficients used to form measurements of a 
sparse signal with elements X (k). In the case that the signal samples are used as the
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Shannon-Nyquist sampling

Figure 1.1: The difference betweeen traditoinal sampling theorem and compressive sensing: 
traditional Shannon-Nyquist sampling (top); compressive sensing sampling (bottom).

measurements, the measurement matrix is defined based on the transformation matrix 
for the considered domain of the signal sparsity.

The Na available samples y(i) at the positions defined by the set

Na  =  { Ui,U2, .. . , uNa },

can be written as

y =  [y (0) , y ( l ) , . . . , y (N A -  1)]T =  [x(n0) ,x (nl) , . . . , x (nNA- 1)]T . (1.27)

The measurements, which are the linear combinations of the inverse transform coeffi- 
cients, are presented in a matrix form as

y =  A X , (1.28)

where A  is a measurement matrix of size Na x N obtained by keeping the rows of the 
inverse transformation matrix \P, which correspond to the instants np i =  0 ,1 , . . . ,  Na — 
1, of the available samples/measurements

A

Vb(no) Vh(no)
V'o(ni) i >i(ni)

n - i (no) 
ipN- i (ni )

■tpo(nNA- i ) /i(n N A- i ) V'n -i(nNA-i )

(1.29)

Using the notation ak (i) =  ipk (n)  we can write a more general form of the measurement
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matrix as

A  =

ao (0)
ao (l)

a i (0)
a i (l)

aN—1 (0) 
aN—1 (l)

ao(NA — l) a i (NA — l) ■ ■ aN — 1(NA — ^

(1.30)

Depending on the particular application, several measurement matrices other than 
the partial DFT, are frequently used in compressive sensing. An example of a widely 
used measurement matrix is the Gaussian measurement matrix, where the weighting 
coefficients are the Gaussian distributed random numbers

ak(i) ~ N ( 0 ,  1/Na ), (1.31)

with zero mean and variance 1 /Na . The weighting coefficients can also be uniformly dis- 
tributed random numbers, or random numbers assuming values +1 or —1 (i.e. Bernoulli 
measurement matrix).

Note that randomness is a desirable property of the measurement matrices. Consid- 
ering the DFT, the randomness can be increased by sampling the signal at an arbitrary 
instant G instead of the regularly defined Nyquist samples at iAt. This case will be 
also examined.

1.2.3 Problem  form ulation

In the mathematical sense, the objective of the CS based approach is to reconstruct 
the N unknown elements of a sparse signal using only the Na < N available samples 
y. Reduction in the number of available measurements will result in a system of Na 
equations, whose matrix form is A X  =  y. Since there are N > Na unknown variables 
in X , the system is under-determined and cannot be solved uniquely, without additional 
constraints.

The primary and most crucial constraint in CS is that the signal is sparse. If this 
constraint is satisfied, the solution is obtained by maximizing the sparsity of the signal 
X , given the measurement equations. Firstly, in order to maximizing the sparsity, the 
sparsity measure must be defined. The most straightforward sparsity measure is the 
Lo-norm, which counts the nonzero values in the transformation domain. The L0-norm 
of X  with K  nonzero elements is

l|X||o =  K. (1.32)

The problem formulation, using the L0-norm, is then

min ||X||0 subject to y =  A X . (1.33)

This is a direct and basic way to maximize sparsity. However, it is an NP-hard (NP 
-  non-deterministic polynomial-time) combinatorial problem. Also, it is sensitive to 
noise and not feasible for computational purposes, having (K) possible combinations
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for a viable solution. This is why more practical cases, such as the closest convex cost 
function, the Li-norm, are used

min ||Xk ̂  subject to y =  A X . (1.34)

In theory, it has been proved that the minimization of the L^-norm will have the same 
solution as the minimization of the L0-norm following particular conditions [24]. The 
L^-norm minimization allows the application of linear programming methods for convex 
function minimization.

1.3 Problem solutions

The CS theory has produced a vast number of methods to find the unique solution 
to the previously stated problem. These can be divided into three broad groups of 
algorithms maximizing the signal sparsity:

• L0-based reconstruction algorithms, solving Eq. (1.33), such as

— Orthogonal matching pursuit (OMP) [25-27],
— Compressive sampling matching pursuit (CoSaMP) [28],

• L^-based reconstruction algorithms, solving Eq. (1.34), such as

— LASSO minimization [29-32],
— Gradient-based reconstruction [33,34]
— Total variations [35-37],
— Iterative hard thresholding (IHT) [38-40].

• Bayesian-based reconstruction [41,42].

The summary of some of these algorithms can be found in Appendix 1. In the next 
subsection, the OMP and its iterative extension will be further detailed.

1.3.1 R econstruction  algorithm

In all reconstruction methods, the initial estimate plays a crucial role. It is not only 
a starting point for all of them, but contains information about the solution existence 
as well. The initial estimation gives a good insight of the reconstruction performance 
which could be expected.

Initial estim ate
The available samples (measurements) are used to estimate the initial values of the 

sparse coefficients X (k), k =  0 ,1 ,2 , . . . ,N .  The values of the initial estimate will be
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denoted by X 0( k), k =  0, 1, 2 , . . . ,N ,  or in a vector form as X 0. The initial estimate 
can be considered as a back-projection of the measurements to the matrix A,

Xo =  A H  y . (1.35)

The elements of this initial estimate can be written as
Na-  1

X o(k ) =  ^ 2  ak (i )y (i ) . (1.36)
i=0

From Eq. (1.35), using y =  A X , the relation between the initial estimate with the 
true coefficients (the actual solution of our problem) is

Xo =  A H A X . (1.37)

Note that if A H A  is an identity matrix, i.e., A H A  =  I, then the initial estimate would 
be equal to the correct coefficients X , resulting in the solution of our problem. However, 
this is impossible to achieve when a reduced set of measurements is available (when the 
measurement matrix is of size Na x N ). The off-diagonal elements in the matrix A H A  
cannot be zero. The maximal value of these elements, denoted by ^ (discussed later in 
Section 1.3.2.), satisfies the Welch lower bound [43,44], meaning that

h >
N -  Na 

Na (N -  1).
(1.38)

From this inequality, we see that the maximal off-diagonal element must be greater 
than zero when Na <  N . Only if all signal samples are available (when Na =  N ), 
then it is possible to get the bound equal to zero and A HA  =  I. This is an expected 
result when the reconstruction process reduces to the inverse signal transform. Then, 
the measurements would be equal to the full set of signal samples y =  x.

Since the properties of the initial estimate will be crucial throughout this thesis, 
its form for a sparse signal will be presented in detail. The measurements in (1.24) 
for a sparse signal with nonzero coefficients X (k ) at k 2 [ k ,̂ k2, . . . ,  kK} =  K, can be 
written as K

y (i ) =  a ki (i )X  (ki^ (1.39)
i=i

The initial estimate elements from (1.36) is of the form

Na-1 Na-1 k

X o(k ) =  ^ 2  a k (i )y (i ) = ^ 2  (*) ( $ ^  (i )X  (k i ))  (1.40)
i=0 i=0 1=1

or, by changing the order of summation,

K Na-1 K
X o(k ) =  ^ 2  X  (k i ) (  ^  a k (i )a kl (i ) )  =  ^  X  (k t )^ (k , k t) , (1.41)

1=1 i=0 1=1
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where
Na-  1

h(k , k i ) =  ^  a k (i )a k l(i ) . (1.42)
i=0

This relations will be used for the analysis of the reconstruction accuracy. Note that 
the value of ^(k, k ) is equal to the element of matrix A HA  at the position (k, k̂ ).

O M P  reconstruction algorithm
For most of the presented results, an iterative variant of the OMP reconstruction 

algorithm [19,28], will be used. This algorithm belongs to the group of implicit zero- 
norm minimization solutions, since it is based on counting and minimizing the number 
of nonzero elements in X (k ). Most of the results presented in the thesis are valid for 
other CS algorithms as far as the conditions for unique reconstruction are satisfied.

The reconstruction algorithm is implemented in two main steps:

1. estimation of the set of positions K  of the nonzero components in X , and

2. reconstruction of the element X (k ) values using the measurements/available sam- 
ples with the estimated nonzero positions.

In order to find the positions of nonzero elements, the initial estimate from (1.35) 
is calculated and used. Two of the methods are considered, an one-step reconstruction 
and the iterative version of this algorithm. Note that, the hardware realization of the 
algorithm in the Field Programmable Gate Arrays (FPGA) circuit is shown in [45]. 
More architectures for CS methods can be used, as presented in [46,47].

One-step O M P
The simplest case is when we can expect that the number of nonzero coefficients of 

the initial estimate X 0(k) at k 2 K  is notably greater in comparison to all other elements 
at k 2 K. In this case, matrix A H A  should be such that X 0 contains K  coefficient much 
higher than the other coefficients. The position detection of the nonzero component is 
done by finding the positions of the K  largest components in X 0, that is

K =  {k i,k 2 , . . .  k x } =  arg{max |X0 1}. (1.43)

Taking the positions of theK largest components forming the set K  in (1.35) the am- 
plitude reconstruction is performed. As it has been stated before, if A HA  were an 
identity matrix, X 0 would be identical to the exact solution X . However, with a re- 
duced set of samples, the Welch lower bound prevents this. Nevertheless, it is important 
to achieve that the diagonal elements of A HA  are more significant regarding the other 
non-diagonal elements.

For the second part of the algorithm, let consider that all K  positions are found 
correctly. Then, the values in X (k) at k 2 { k ]_ , k 2 , . . . , k K } are set to zero, and the 
vector X K  =  [X (k \), X (k 2) , . . .  , X (k K )]T is with unknown nonzero values that should
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be found (reconstructed). Note that this assumption transforms the initial under- 
determined system y =  A X  with Na equations and N  unknowns in X  to an over- 
determined system of Na equations with K  unknowns (X (k \), X (k 2) , . . .  , X (k K) ). The 
new set of equations now reads

y =  A  K X K. (1.44)

This system can be solved for the nonzero spectral values X K at the estimated positions 
K. The matrix A K is an Na x  K  sub-matrix of A , keeping only the columns of the 
nonzero elements positions in X (k )

A K

afci(0) 
afci(1)

ak2 (0) 
ak2 (1)

aki (Na -  1) ak̂  (Na -  1)

akK(0) 
akK(1)

akK (Na  -  1)

(1.45)

The smallest number of measurements needed to recover K  coefficients at the known 
positions is Na =  K  < N . However, for an accurate estimation of the nonzero posi- 
tions, a much larger number of measurements is needed according to the reconstruction 
conditions (which will be discussed in the next section). When Na > K , the system 
is over-determined, and the solution is found in the mean squared error (MSE) sense. 
The solution is

(1.46)X K

H  \ _ A - U  H

(a k a k ) a k y  =  pinv(a k ^
where pinv(AK ) =  (A KA k ) ^AK is a matrix A K pseudo-inverse and A K A K is called 
a K  x  K  Gram matrix of A K .

Iterative O M P
The OMP procedure considers the criteria when the K  components are larger than 

the initial value coefficients at originally zero-coefficient positions. That condition can 
be relaxed by using the iterative version of the method. In order to estimate the position 
of the largest nonzero component, only its value must be larger than the values at the 
originally zero-valued coefficient positions. The position of the largest component is 
found as

ki =  argmax(|X0|}. (1.47)

Its amplitude value is estimated using Eq. (1.46) as it were the only nonzero coefficient. 
It is reconstructd using the sub-matrix A^. Then, this component is subtracted from 
the measurements, i.e., y — A^X^, and the procedure is continued by estimating the next 
largest coefficients with the new measurements. After the initial estimate is calculated 
with these samples, its largest value position is found as k2, and the new set of two 
nonzero positions is formed as {k^,k2}. Matrix A 2 is formed with these two positions 
and (1.46) is solved for X 2. After the two largest coefficients are detected and estimated, 
they are removed from the measurements as y — A 2X 2.

If these new measurements are equal to zero after the subtraction, it means that 
we have solved the problem and that signal is K  =  2 sparse. If this not the case,
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the new measurements (removing the two largest coefficients) are used for the next 
initial estimate and the third largest coefficient position detection. The procedure is 
iteratively continued until some desired stopping criterion is achieved. The simplest 
measure for it can be that the new measurement matrix, after K  steps, calculated as 
y  — A k X k , is equal to zero or its energy is bellow a defined small accuracy level.

1 .3 .2  C o n d it io n s  fo r  r e c o n s t r u c t io n

Having the condition of sparsity fulfilled, additional criteria should be satisfied for a 
successful and unique reconstruction with a reduced number of samples. These criteria 
are intensively studied and they are commonly expressed using the coherence index of 
a measurement matrix or the restricted isometry property (RIP) of this matrix.

C o h e r e n c e  in d e x

The most widely used criterion for a successful reconstruction is based on the co- 
herence index of the measurement matrix A. Consider an N a x  N  measurement matrix 
A  and denote its columns by vectors , i =  0 ,1 , . . . ,N  — 1, that is

A  =  [ao , a i , . . . ,a N - 1]. (1.48)

The scalar product of two columns of this matrix, k and i, is defined by

Na-  1
(ak  ̂ai) =  ai(P)a*k(P). (1.49)

p=0

Notice that this product is, by definition, equal to the (k, i) element of matrix A h A. 

D e f in it io n  1 .3
T h e  coherence index o f  a  m e a s u r e m e n t  m a t r i x  i s  d e f i n e d  a s  t h e  m a x i m a l  v a l u e  o f  t h e  

n o r m a l i z e d  s c a l a r  p r o d u c t

p  =  max \p (i ,  k)| max (aH, ai
(aH ̂ ak)

E ^ o 1 ai ('p)al (p) 

E ^ " 1 |ak (p)|2
(1.50)

for i =  k. For the normalized measurement matrices EN=0 1 \ai(p)\2 =  1, the coherence 
index is defined by

p =  max \p(i, k)\ max (a H
k , a  i)

 ̂na- a

max I ai(P)ak(p
p=o

(1.51)

This value is an important parameter in choosing the measurement matrix which 
will be further discussed by Statement 1.
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Statem ent 1: A K-sparse signal can be reconstructed from the measurements in a 
unique way if the coherence index of the matrix A  satisfies the condition

K  < 1
2 ( 1 +  f )

(1.52)

A smaller coherence index means that signal with larger sparsity values K  can be 
reconstructed. The relation can be derived considering the initial estimate as

K
Xo (k) =  £  X (ki)^(k, ki). 

1=1
(1.53)

Without loss of generality, assume that the largest coefficient value is X(k^) =  1. 
The largest disturbance to this coefficient estimation is if the remaning (K  — 1) nonzero 
coefficients are almost equally strong, i.e., close to 1. Then the initial estimate would 
be

K

X 0(k) =  ^ 2  h (k ,k i) . (1.54)
i=i

Since ^ (k, ki) < ^ , the largest possible value at the original zero coefficient position is 
|X 0(k )| < K ^ . At the largest coefficient position, k =  k ,̂ the worst case is if all other 
(K  — 1) terms are maximal (equal to p.) but with opposite sign than its value, that is 
X 0(k )̂| >  1 — (K  — 1)^ . The detection of the largest element is successful if its worst 
case initial estimate is greater than the worst case value at zero coefficient positions

1 — (K  — 1)^ >  K ^  (1.55)

Note that, if this relation is satisfied for the largest coefficient, then, after it is success- 
fully detected, reconstructed and removed, the relation holds for the signal with lower 
(K  — 1)-sparsity.

R estricted  isom etry property  (R IP )
The restricted isometry property is another way to define a condition which the 

measurement matrix should satisfy in order to uniquely reconstruct a signal under the 
CS approach.

Firstly, a K  sparse signal is uniquely reconstructed if the size of the smallest non- 
singular sub-matrix of A  (spark) is such that

spark{A} > 2K. (1.56)

This condition means that all submatrices of A  with order lower than 2K  are nonsin- 
gular.
Statem ent 2: A K-sparse signal can be uniquely reconstructed using the measurement 
matrix A, if the RIP condition

1 2̂ k < || A 2K X 2K 112 < 1 +  2̂ K ̂ (1.57)
|X2K 112
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holds for all its sub-matrices A 2K of order 2K , where 82K is the isometric constant in 
the range 0 <  52K < 1. The constant 52K can be calculated as

82K — max{1 Amjn, Amax 1} (1.58)

where Amin and Amax correspond to the minimum and the maximum eigenvalue of 
A^k A 2K, respectively.

The RIP condition ensures that the solution of the Eq. (1.33) and Eq. (1.34) give 
the identical results, meaning that the results of the approximation are close to the 
true values [24]. It is seen that, in the case of Eq. (1.34), the isometric constant is in 
the range 0 <  82K <  t /2 — E

Although these conditions are fundamental for obtaining a successful and unique 
reconstruction of a sparse signal, it is interesting to note that they are very conserva- 
tive for real-world sparse signals. Without loss of generality, we can assume that the 
reconstruction conditions are met and the practical guidelines are satisfied (that the 
number of measurements is significantly higher than the sparsity).
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The compressive sensing framework assumes sparse signals. However, due to their 
nature, many real signals (particularly non-stationary signals) are only approximately 
sparse or not sparse at all. Additionally, the sparsity condition can be distorted due to 
many other reasons. The most evident one is the additional noise in signals. Moreover, 
a very simple, yet an immense real-world problem, is the analysis of signals which are 
not on the sparsity domain grid. This includes signals which are not on grid frequencies. 
These signals can be analyzed and processed within the compressive sensing framework 
assuming that they are sparse under natural circumstances. The influence of their 
nonsparsity will result in the error through the reconstruction. For such signals, only 
the limit bounds of the reconstruction error were derived in the literature [15,24,48-50]. 
The main contribution of this Chapter is the calculation of the precise expected squared 
reconstruction error in time-varying signals. The STFT is assumed as the sparsity 
domain of the analysis. The reconstruction of nonsparse signals constrained with a 
sparsity condition will be examined and compared to the statistical error calculation.

In the first part of the Chapter, the properties of the initial estimate in the recon- 
struction procedure will be explained as the basis to the error derivation. The noise 
in the initial estimate will be calculated on uniformly and randomly sampled signals. 
These results will support the error calculation in the STFT domain. The result will 
be generalized for cases when the signal is nonuniformly sampled [51] as a consequence 
of sampling jitter or intentional sampling deviations. Since most of the real systems

21
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are implemented in hardware using finite length registers, a specific form of noise, the 
quantization noise, is also present in signals [52], and it will be also analyzed in this 
Chapter. At the end, the effect of noise folding will be considered, which will conclude 
the effectiveness of the error calculation in many real circumstances of signals nature.

2.1 Initial estimate analysis for uniform sampling

The initial estimate X 0 from Eq. (1.35) is the key for deriving the exact error of an 
approximately sparse or nonsparse signal. It can be understood as the back-projection 
of the samples on the measurement matrix, which is defined as the matched filtering. It 
is the first important step for the analysis and reconstruction of a signal. The available 
data are back-projected to the measurement matrix and used in all reconstruction 
algorithms. Moreover, the back-projection relation contains more properties of the 
desired sparse signal than being used just as its initial estimate. In Section 1.3.3. it 
was shown that the key criteria for the signal reconstruction can be related to the 
back-projection relation and initial estimate (e.g. the coherence index).

The initial estimate can be rewritten as

Xo(k) =  ^  X(ni)0ni (k). (2.1)
ni2NA

If all measurements are available, the initial estimate of an originally sparse signal X (k) 
will be sparse and equal to the original signal transform. However, if the set of available 
measurements is reduced, the missing samples will produce noise in the initial estimate 
and cause its deviation from the original transform. Having less available samples will 
make the signal in the transformation domain more noisy, as illustrated in Fig. 2.1.

For an easier understanding, let us consider the STFT calculated at one instant 
using a rectangular window. The analysis of the transform then reduces to the DFT 
analysis of the signal samples within the window. For the DFT case, the Eq. (2.1) 
reads

Xo(k) = J 2  x(nt)e~-2nnik/N. (2.2)
ni 2Na

Firstly, let assume a simple single-component signal, i.e. K  = 1 , with amplitude A0 at 
a position k0,

Xo(k) = 2 2  Aoe- N (k- k0)n (2.3)
n€NA

The expected value of X 0(k), i.e., E {X 0(k ) } , denoted by ^Xo(k) is equal to

hXo(k) =  A0 X  E {e -jN(k-ko)n} . (2.4)
n2NA

Note that the set is random, since it contains random NA samples, out of N . The 
expectation is caclulated over this random set. In [8, 53], it has be shown that the
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Signal with full set of samples, Na =  N  =  128

Signal with reduced set of samples, N a =  64

|DFT| of the signal with full set of samples
80

60 

40h

20 -

-50 0 50
Frequency

|DFT| of the signal with reduced set of samples

0

Figure 2.1: Initial estimate noise illustration: time domain (left); frequency domain (right). 
Top - signal with full set of measurements. Middle - signal with 50% of available samples with 
corresponding DFT. Bottom - signal with 25% of available measurements with corresponding 
spectrum. Red dots represent true values, black lines present available values.

expected value is
E [ e ~-N(fc-fc°)n } =  S(k  — k o) , (2.5)

where 8(k  — k0) =  1 for k =  k0, and S(k  — k0) =  0 for k =  k0. Since there are N A terms
in (2.4), we get

hXc(fc) =  A oN A5(k  — k o). (2.6)

For the calculation of variance, the value at the position of the component, i.e. 
k =  k0, is %X0(k) =  0. For the case when k =  k0, the variance of the initial estimate will



24 Chapter 2. Reconstruction error of non-stationary signals

be nonzero, while the mean value is zero. The variance is calculated using

4 o (k) =  X X |A ol2E N(k- *o)(n- ’" ) } . (2.7)
ra€NA m 2 N A

It has been previously confirmed in [53] that, for random n =  m and k =  k0, 
variables e- j N (k~ko)n are equally distributed, producing expectation equal to

E { e- j N (k-ko)(n~m) | =  — 1
N -  1' (2.8)

For n =  m,thecomplex sinusoidisdeterministic, andtherelation E [e  j n (k ko)(n m)j  =  
1 holds.

Note that, in (2.7), there are NA terms when n =  m, and NA(NA — 1) terms when 
n =  m. Therefore, for k =  k0, the DFT coefficient variance becomes

_2 =  I A 12 Na Nq^Xo(k) =  lA0| N _   ̂■ (2.9)

In the general case, i.e. when K  > 1, the initial estimate is a summation of 
independent random variables

K
Xo (k) =  ^  Y , A le~3N (k" ki)n. (2.10)

n 2Na l=1

According to (2.6), the mean value of a K  > 1 sparse signal is then

K

hxo(k) =  Na ^  Aih(k — ki). (2.11)
l=1

Since the random value at k =  kl; l =  p, does not contribute to the noise, the variance 
of X (k) will be

< ( k )  =  X Na |Ai|2 . (2.12)l=1 N — 1
l=P

This analysis can be applied on sparse time-varying signals in the joint time- 
frequency domain. The total variance of a STFT signal will be the average sum of 
the variances of each windowed instant of DFT.

2.2 Initial estimate analysis for random sampling

In some practical scenarios, signals are randomly sampled due to intentional strategy 
to increase randomness in sampling or due to the effect of high jitter in sampling. The 
jitter can be caused by lack of synchronisation, hardware or transmission problems.
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Random sampling affects the processing of signals under the CS framework, since the 
sample values are not on the grid anymore, i.e., at random positions 0 <  t n <  N . Then, 
the initial estimate of a signal with available samples at random positions tn 2 =
{ t 1 , t 2 , • • • , CvA }  is

X o( k ) = ^ 2  x ( t n)e ~ j2nt" k/N• (2.13)
nGN*

The mean value of such signal remains the same as for the uniform sampling case, i.e. 
the mean value is equal to the one from Eq. (2.11).

In the case of random sampling, it is interesting to notice that, unlike when the 
signal is uniformly sampled on the grid, the variance at the signal component of a signal 
will not be zero even when N signal samples are available. This will conclude that the 
all components in the initial estimate X 0(k) are affected by a noise. The noise has a 
variance

K
aX0(k) = ^  NAA2[1 — h(k -  k i )]. (2.14)

1=1

2.3 Error in time-frequency signal reconstruction

Intuitively, it can be seen that this idea is closely related to  finding the exact error 
o f  the reconstruction  o f approxim ately  sparse or nonsparse signals when they are re- 
constructed  under the assum ption that their nature is originally sparse. For a signal 
x ( n ) ,  w ith the corresponding transform ation  X (k ),k  =  0 ,1 , . . . ,N  — 1, the definitions 
o f  approxim ately  sparse and nonsparse signals are given next.

Definition 2.1
An approximately sparse signal, of length N , is a signal which consists of K  sig- 
nificant non-zero components, K  ^  N , at k  2 K =  [ k ,̂ k 2 , . . . ,  k K} , and N  — K  small 
non-zero components k  2 K , i.e.

min j|X(ki)|,X(k2 )| , . . . , |X(kK )|) >  j|X(kK+i)|, |X(k K+ 2 ) ! , . . .  |X(k K+v )| j
(2.15)

Definition 2.2
A nonsparse signal, oflength N , is a signal which consists of N  non-zero components 
of the same order of amplitude.

Since the signal is considered as originally sparse, the reconstruction  is perform ed 
under the constraint that it is K -sparse. T he reconstructed are K  com ponents and the 
rem aining com ponents are set to  zero using the O M P  algorithm . This results that the 
rem aining N — K  com ponents, that are not reconstructed, will im pact on  the error in 
the reconstructed K  com ponents. A n  analysis o f  the error in the reconstructed signal 
caused by  this effect will be analyzed.
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For the analysis, recall a time-varying signal x(n),and its windowed version x(n, nw) 
of length Nw, with its STFT denoted by SN (n) as

Nw/ 2-i
SN (n, k) =  DFT{x(n +  nw)w(nw) }  =  x(n +  nw)w(nw)e- j 2™wk/Nw. (2.16)

n® = Nw /  2

Assuming sparsity K , the signal is reconstructed using the available measurements 
at positions n +  nw 2 NA . Consequently, the number of missing measurements is 
Nq =  N — Na .

Notice that using any CS reconstruction method (assuming that conditions for a 
successful and unique reconstruction are met), we detect and reconstruct K  coefficients, 
with Ai(n) corresponding to the reconstructed amplitudes at k 2 K. The amplitudes 
of the nonreconstructed components generate noise in the reconstructed coefficients 
SR(n). The noise variance caused by the components that are not reconstructed is 
obtained from the variance of the initial estimate, given by Eq. (2.14) as

|Ai(n)|2 N N ) . (2.17)

The amplitude values at the positions of the original nonzero coefficient in the initial 
estimate SN0(n) are proportional to NA. In the reconstruction process, the amplitudes 
should be reconstructed to their true values (i.e., when the full measurement set is 
available). Thus, the values of the recovered amplitudes should be proportional to N , 
instead of Na . resulting in the scaling factor to be N/Na . Therefore, the noise variance 
scaling factor in the reconstructed coefficients is (N /N a )2. Hence, the noise variance 
caused by one nonreconstructed component to the reconstructed coefficient will be

|Ai (n)|2
N 2 NaNq

n A n  - 1
2 a t N Q=  |Ai(n)|2 N ^ (2.18)

The noise energy in the K  components of SR(n) is the summation of the K  variances of 
each reconstructed coefficient. The total energy of noise in the reconstructed coefficients 
generated by the N — K  nonreconstructed components is

|| SNR(n) SNK(n) || 2 =  K N N^ ^ 2  |Al(n)|2 ’
A l=K+i

(2.19)

where SNR(n) is obtained from SR(n) by adding zero values at the positions k 2 K. 
The energy of the nonreconstructed elements in the STFT can be written as

N
llSN(n) —SNK(n)|2 =  |NAl(n)|2 ’ (2.20)

l=K+i

where SNK(n) is a signal of length N , which represents the amplitudes of SN (n) at 
positions K, and is zero-valued everywhere else. From (2.19) and (2.20), it can be
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concluded that the energy of error in the reconstructed components is proportional to 
the energy of the nonreconstructed components of the nonsparse signal in the form

Nq
kSNR(n) - SWK(n) k2 =  K —\  ||Sn (n) - SNK(n)l2 (2.21)

12 " N a n

Note that, in the case when a randomly sampled signal is considered, the error is

(2.22)

If the signal is strictly sparse, we can conclude there is no reconstruction error, i.e.

2 K  2
||SNR(tn)-SNK(tn)H2 =  T y  ||Sn (tn) — SnK (tn) || 2 •

Na

|| S  N R . ( t n )  S  N K  ( t n )  || 2 =  0, (2.23)
meaning that Sn (tn) =  SNK(tn), whether the signal is sampled uniformly or randomly.

For uniformly sampled signal, the reconstruction error is zero-valued when all sam- 
ples are available, i.e. Na =  N and Nq =  0.

2.3.1 A dditive input noise

In a more realistic case, the received measurements are usually with some additive noise

y +  " =  A X , (2.24)
where e is the additive noise with variance a". Having noisy measurements will provide 
that the initial estimate of the signal, SN0(tn , k), is with an additional noise component 
as well. The variance in SN0(tn , k), caused by the measurements input noise, is

=  Na .̂2. (2.25)
In the reconstruction process, as mentioned, the initial estimate is scaled by the factor 
N/Na . The noise variance in one reconstructed component is then

var[SNn(tn, k)} =  Nao2A  —  ) =  —  a/. (2.26)
VNa /  —a

That will result in the total MSE in K  reconstructed coefficients, due to to the additive 
noise

N 2
||SNR(tn) — Sn k (tn) ||2 =  K — a£2 *. (2.27)

N A

The error energies, caused by the nonsparsity effects and the additive input noise 
independently, can be summed to produce a general relation for the expected squared 
error including both effects. The equation for the noisy and nonsparse signals case is 
given by [54]

2 2 N 2 0
||SNR(tn) — SNK(tn)|2 =  K C K kSN (tn) — SNK(tn) k2 +  K TT“ (2.28)—A
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with C K  =  Nq/NaN  for uniform sampling ( t n  =  n A t )  and C K  =  1 / N A  for random
sampling.

The accuracy of the theoretic result in Eq. (2.28) will be validated on different sig- 
nals. The result for the error calculation will be compared with a statistically calculated 
error,

Egtatistical =  10log10(||SNK(tn) — S N R ( t n )\\̂ ] (2.29)
where SN K ( t n ) is the original K -sparse signal at positions k  2 K  and SN R ( t n ) is the 
reconstructed signal at k 2 K.

2.3.2 Error calculation exam ples

Exam ple 1: U niform  sampling. Let assume a signal consisting of two main com- 
ponents which are linear frequency modulated (LFM)

x(t) =  1.3e
+  ( 52N+32(N)2 +24>i) jn(4N - 20(N)2+202 )

V /  +  2.1e V / (2.30)

with N =  1024. The values ^  and 02 are the random phases in the signal. The cases 
of uniform and random sampling are considered. The signal is sampled with sampling 
interval At =  1. The STFT of the signal with full set of measurements at t =  nAt and 
with Hamming window of length Nw =  256 is presented in Fig 2.2 (top left).

A reduced number of available measurements/samples is considered next. The 
available samples are affected by a random Gaussian noise with zero-mean and variance 
ae =  0.1. The STFT with the set of available samples of size Na =  2N/3 is presented 
in Fig. 2.2 (top right). From the Figures it is seen that the signal is non-stationary. 
The reconstruction with sparsity level of K  =  8,16, 32, 48 is presented in the remaining 
subplots of Fig. 2.2, respectively. It is interesting to note that, by using only K  =  8 
the weakest component is not reconstructed. When K  =  16, only few parts of the 
component are reconstructed. Only by using K  =  32 or more we can get the recovery 
of both components.

Using the calculation from Eq. (2.28), the theoretical error is calculated as
/  N n  2 \

Etheoreticai =  10 log^ [ K n n  ||Sn (n) — SNK(n)k2 +  K — o/j . (2.31)

The total reconstruction error assuming different numbers of available measure- 
ments Na and various sparsities K  is illustrated in Fig. 2.3. The results are averaged 
in 100 realizations. The statistical error is presented with the dots, while the theoretical 
error is shown with lines. The filled dots present that the reconstruction is performed 
successfully with high probability. In this case, the condition to consider a successful 
reconstruction is when Na > 4K .

Exam ple 2: R andom  sampling. Assume a LFM signal with three main com- 
ponents

x(t) =  Xi (t) +  X2 (t) +  X3 (t) (2.32)
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Full STFT with uniform sampling
STFT with noisy 
available samples

Reconstruction with K=8 Reconstruction with K=  16

Reconstruction with K=24 Reconstruction with K=32

Time index Time index

Figure 2.2: Sparse STFT reconstruction when signal is uniformly sampled: STFT with the 
full set of measurements (top left); STFT with the reduced set of noisy measurements with 
variance ae = 0.1 (top right), the reconstruction with K  = 8,16, 32, 48 (remaining subplots).

where

x, (t )= 0 .7 e jd 52 N +S2< N ,1+2“ ,

x 2(t) =  1.3e
jw 113 N  +46( N  )2+2^2

x 3(t) =  e
j + ( 446 N  —54( N  )2+2 ̂

(2.33)

(2.34)

(2.35)
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Uniform case

Figure 2.3: Total averaged reconstruction error asuming different number of available mea- 
surements Na and various sparsity levels K . The error is averaged over 300 realizations. The 
signal is uniformly sampled. Lines present the theoretical results, while the dots are the sta- 
tistical values. The filled dots show when the recovery is performed with a high probability, 
i.e. for Na > 4K .

with N =  1024 and random phases 0 i , 02, and 03.
In this case, a random set of NA  available samples at 0 < tn  < 1024 is considered. 

The STFT, when the full set of measurements is considered, is shown in 2.4 (top left). 
It can be observed that random sampling of the signal adds to the nonsparsity of the 
signal, together with the reduced number of available samples, Fig. 2.4 (top right). 
The signal is reconstructed with assumed sparsity levels of K  =  16, 24, 32, 48.

Using the calculation from Eq. (2.28), the theoretical error is

, k  N 2 \
Etheoretical llSN(n) - SwK

The total reconstruction error when NA  =  N/2, 2N/3, 3N/4 is presented in Table 
2.1. The total error is averaged in 100 realizations. The statistical results are presented 
with dots, and the theoretical error is presented with the lines. The filled dots present 
the results when the reconstruction success is of high probability. Note that the error 
in the random sampling case is larger than the one received in the uniform case. It 
is due to the fact that it causes higher nonsparsity than in the uniform sampling. 
Additionally to that, noise increases the nonsparsity in the signals. Our goal, however, 
is to find the exact error which is produced by the reconstruction. The statistical and 
the theoretical error show high agreement in the reconstruction, proving the exactness 
of the derivation.
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Figure 2.4: Sparse STFT reconstruction of a randomly sampled signal: STFT with the full set 
of measurements (top left); STFT with the reduced set of noisy measurements with variance 
(j£ =  0.1 (top right), the reconstruction with K  =  8,16, 32, 48 (remaining subplots).

Exam ple 3: A pplication  on audio signals. The audio signal “Train”, included 
in the MATLAB software, is considered. Its original STFT, with full set of samples, is 
presented in Fig. 2.5 (top left). The STFT is performed using a Hanning window with a 
50% overlap, which allows simple and direct reconstruction of the audio signal. Assume 
that the sparsity of the signal is K  =  55 and that only half of the measurements are 
available. The STFT of the signal with the available set of measurements is presented 
in Fig. 2.5 (top right). The reconstructed STFT assuming the sparsity K  =  10 is 
illustrated in Fig. 2.5 (bottom left). The reconstructed STFT with sparsity K  =  50 is
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Table 2.1: Total averaged reconstruction error in the reconstructed coefficients (in dB) for 
Na = N/2,2N/3,3N/4, and sparsity levels K = {16,24,32,48} when randomly sampled 
signal is used.

Na = N/2 K  =  16 24 32 48
T h eory —0.23 —0.58 —0.83 —1.07

Statistics —0.35 —0.74 —1.01 —1.23

Na = 2N/3
T h eory —0.50 —0.93 —1.25 —1.57

Statistics —0.61 —1.00 —1.28 —1.61

Na = 3N/4
T h eory —0.54 —0.96 —1.35 —1.64

Statistics 0.65 -1.03 1.37 1.57

presented in Fig. 2.5 (bottom right).
Also, an audio signal with the words “You and I” is recorded. It was recorded 

on a MacBook Air laptop using the MATLAB software. The signal was sampled at 
a frequency f s =  44.1 kHz, with 16-bit A /D  conversion and single-channel mode. 
Assume that 50% of the samples are unavailable. Two sparsities are assumed, K  =  30 
and K  =  80. The four subplots in Fig. 2.6 present the original STFT, the STFT with 
a reduced number of measurements, the STFT reconstruction with K  =  30, and the 
STFT reconstruction with K  =  80, respectively.

The total error of the reconstruction using different sparsities K  for the two audio 
signals is shown in Fig. 2.7. The error is calculated according to 100 realizations. The 
black solid line presents the the theoretical error. The red circles are the statistical 
results. We can conclude that in both cases, the results are similar, proving that the 
exact error equation is found and statistically confirmed.

Exam ple 4: R adar signals. Another suitable application for the recovery of non- 
sparse signals assuming sparsity constraint is inverse synthetic aperture radar (ISAR) 
imaging [55-60]. In general, ISAR images require only few components for transmission 
and reception, which is sufficient for obtaining information on the range and cross-range 
of a target. That makes them usually sparse in the 2D-DFT domain. Assuming sam- 
pling on the grid, an ISAR signal, of size N  x M , has reconstruction error

Etheoretical =  10logiQ ( K  N^fQ M  k S N (n) -  S NK (n) ||2 +  K  . (2% 7)

where Nq =  N M  — NA .
The ISAR image of an airplane MIG-25 is considered [61]. It is approximately 

sparse in the 2D-DFT domain. The ISAR image is shown in the top left subplot of Fig. 
2.8. In the logarithmic scale (top right subplot), the nonsparsity is noticeable. Sparse
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Original STFT of audio signal “Train”

Reconstructed STFT with K = 10

Available STFT samples

Reconstructed STFT with K = 50

Time index

Figure 2.5: The recovery of the audio signal “Train”: STFT with full set of measurements (top 
left); STFT with 50% of available samples (top right); Reconstructed STFT with K  =  10 
(bottom left); Reconstructed STFT with K  =  50.

reconstructions from NA = N M / 2 available samples, with K  =  50,150, 250, 350 are 
shown in the remaining four subplots of Fig. 2.8. The error calculation, according to 
Eq. (2.37), is presented in Table 2.2.

Table 2.2: The error in the ISAR reconstructed coefficients for MIG data for assumed sparsities 
K  =  {50,150, 250, 350}.

Na =  NM/2 K  =  50 150 250 350
T h eory

Statistics
-20.92
-20.19

-24.72
-24.36

-28.71
-28.17

-31.60
-30.34

Na =  2NM/3 K  =  50 150 250 350
T h eory

Statistics
-16.36
-17.85

-17.87
19.32

-20.12
-21.58

-20.12
-21.58
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Original STFT of recorded signal “You and I”

Reconstructed STFT with K = 30

Available STFT samples

Reconstructed STFT with K = 80

Figure 2.6: The recovery of the recorded audio signal “You and I”: STFT with full set of 
measurements (top left); STFT with 50% of available samples (top right); Reconstructed 
STFT with K  =  30 (bottom left); Reconstructed STFT with K = 80.

Total error in audio signal “Train” Total error in recorded signal “You and I”

Figure 2.7: Total error in dB after the reconstruction in 100 realizations of “Train” (left) and 
“You and I” (right), with various sparsity levels. Black line represent the theoretical results, 
red circles is the statistical estimation.
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Figure 2.8: Reconstruction of the ISAR MIG 25 image: Original ISAR (top left); Original 
ISAR in dB (top right); the reconstruction with K = 50,150, 250, 350.

2.4 Sampling generalization

For uniform sampling, the considered instants in the reduced set of measurements are 
defined by sampling theorem and a random subset of all such instants. The random 
sampling is done at a set of fully random instants within the considered time interval. 
These two cases can be considered as the special cases of the nonuniform (jittered) 
sampling at the instants tn =  n +  un, where un it the random variable causing the shift
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in the uniform sampling at instant n (unit sampling interval is assumed without loss of 
generality). the random variable (jitter) with a uniform distribution —A /2  < vn < A /2  
is assumed. The two special cases of this nonuniform sampling are: (i) the uniform 
sampling (when A =  0) and (ii) the random sampling (when A is large). The resulting 
reconstruction depends on the degree of randomness in the nonuniform sampling, as it 
will shown next.

The general form of the expected squared error in the reconstructed coefficients is 
obtained using the initial estimate. Having a signal x(tn) sampled at tn =  n + un, its 
initial estimate can be written as

X o( k )  =  A oejNktn
n€NA

^ 2  AoejN knej Nkvn
n2NA

(2.38)

The initial estimate of a single-component x(tn), with amplitude A0 at k0, will then be

X o(k) = A 0ej N  knej N  (k-ko)Vn .
n2NA

The mean value of X 0(k) becomes

hXo(k) A0 ^ 2  E { ejN (k-ko)n} E { ej N (k-koK }.
n€NA

(2.39)

(2.40)

We have seen that for the first term, A0 Jj)neNA E {e jN(k-ko)n}, the mean value is 
pXo(k) =  A0NA5(k — k0). For the second term, caused by a random sampling jitter, the 
expected value is calculated as

oA/2
E {ej N (k-k o } =  p (0 )e j N (k-ko)ed0

-A/2
_  sin( *(k-k>)A)

(̂k-ko)A 
N

fx(k — k0) A'
sinc ------- —------

V N  ,
(2.41)

The probability density function p(0) =  A is used for the uniform random variable 
0  =  un, within the interval [— A , A]. When k — k0 =  0, the expected value in Eq. 
(2.41) is 1.

The variance is calculated as,

a2
Xo(k) yA  yA  |a 0|2e { ej N(k-ko)(n-m)} e { ej n (k-ko)+n

n€NA m£NA
vm ̂ } • (2.42)

For k =  k0,n =  m, the second term is written as

E { ej  N  ( k - k o ) ( Vn - Vm  ̂ } =  E { ej  TV (k k o ) vn  } E  { e j  0V (k-ko )vm  }, (2.43)

which, obviously, is equal to , as the expectations over statistically independent u,n 
and um. For n =  m, Eq. (2.43) produces the result equal to 1.
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When all the available samples are considered, there are Na terms in the sum when 
m =  n, and Na (Na — 1) terms when n =  m. In the multicomponent case, i.e. K  > 1, 
the variance is a sum of individual variances of each noise-only component k =  ki.

For K  > 1, k  =  ki,k2, . . . , k K, the generalized variance of the components at 
k  =  k̂  ,k2, . . . , k K will be

a2
Xo (k)

K
£ N a |Ai|2 Ji

l=1

Na
n

1 • 2 -s in c  
1

n(k — k  )A
n

[1 — 5(k — ki)]. (2.44)

The variance is frequency dependent. Its mean can be estimated as a frequency inde- 
pendent parameter

g (a ) = N  x  sinc2 (  ̂ )  ■ (2-45)k= 1

Note that, in the same manner as in the analysis for the partial uniform DFT and 
the partial random DFT, we can define variances in other measurement matrices.

Exam ple: Generalization. The nonuniform distribution analyzes the case when 
the signal is close to the uniform sampling, with a small-offset of the true value. This 
is known as the jittering effects, which affects many real-signals in their transmission.

Consider an approximately sparse signal in the DFT domain,

j  1 +  k (1), for l =  1,2, . . . , K ,
\ — 3l/2K, for l =  K  +  1,K +  2 , . . . , N .

The sparsity level K  =  7 and k(1) is a random variable. It is uniformly distributed 
between 0 and 0.4. The error in the reconstructed coefficients is calculated and given in 
Fig. 2.9. The cases with Na =  2N/3 and Na =  3N/4 available samples are considered. 
The error calculation is analyzed for the cases when A =  0 (uniform sampling), A  =  1 
(nonuniform sampling) and A ^  0 (random sampling). The assumed sparsity is varied 
SK =  1 ,2 , . . . ,  15. Black color represents the statistical values

E gtatistical 10logio (||X k — X r ||2) , (2.47)

while red color represents the theoretical results,

Etheoretical 10logio (
K

n a
1 — — 1 g (A)

n -  1  y J » x  — X ko B2 ) (2.48)

We can see that, in all three cases, the error significantly drops when the assumed 
sparsity is SK =  7 reached the signal approximate sparsity. The uniform sampling 
produces the best reconstruction results in all considered cases, while an increased 
randomness results in a higher reconstruction error. The theoretical and statistical 
results highly agree, proving that, in the general case, the accuracy of the derived
error.
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Reconstruction error Reconstruction error

Assumed sparsity Sk  Assumed sparsity Sk

Figure 2.9: Reconstruction error as a function of various sparsity levels K for different values 
A: for Na = 2N/3 of available samples (left) and for Na = 3N/4 of available samples (right). 
Values for A used are A = 0 (lower lines), A = 1 (middle lines), and A »  0 (higher lines).

2.5 Quantization error in compressive sensing

So far, it has been assumed that the measurements can take as many bits as needed for 
their representation. If a non-quantized signal is strictly sparse, the error, calculated 
as a difference between the original and reconstructed signal, will be zero or negligi- 
ble. However, the reconstruction will produce some error if a signal is reconstructed 
from quantized (digitized) measurements. After quantization, the input signal will be 
corrupted with uniform additive noise, whose values are between the bounds of the 
quantization levels.

Despite the effects the quantization is exploiting, it is of great importance in the 
hardware implementation. The samples measurements are stored into registers of (B  + 
1) bits, where B bits are for the measurement absolute value and the additional bit is 
for its sign. The samples are formed as

y b =  digital^ { A X }  (2.49)

or for complex-valued case, where both real and imaginary parts are quantized, as

y B =  digitalB { < { A X } }  +  j  digitalB { = { A X } } ,  (2.50)

where digitalB is the signal digitized by B bits. Considering the quantized measure- 
ments, the transformation coefficients X (k ) are reconstructed with the quantization 
error that depends on number of bits and number of measurements.

When a signal is quantized in the amplitude, the error which produced by the 
quantization is the quantization noise within the limits

\e (n i)\ <  /2, (2.51)

where A q is related to B as
Aq =  2- b . (2.52)
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To achieve appropriate analysis, the quantization error is assumed to be an uni- 
formly distributed white noise, which affects the measurements in the form

y =  y B +  e, (2.53)

where e is the vector of the quantization noise with elements e(ni). Note that the 
quantization errors must be uncorrelated with each other nor with the considered signal.

By definition, the mean and variance of that noise is [8]

»e =  E {e } =  0, (2.54)
^  =  A j/12 . (2.55)

When a complex-valued signal is analyzed, both real and imaginary parts of samples 
add to the noise, resulting in a variance

^  =  2AJ/12 =  AJ/6. (2.56)

As mentioned in Section 2.3.1. (Additive noise), noisy y will lead to noisy X 0(k) 
with variance Vx0(k) =  °e . The noise variance of the reconstructed signal is then

(k) =  4  (2.57)

The energy of the reconstruction error in the K  reconstructed components is

II X r -  X k 112 =  K „l .  (2.58)

In this interesting to note that, the energy of error in the reconstructed components 
will remain unchanged if [52]

2 -2 b
Kal  =  K -------=  const. (2.59)

6

That is, reducing the number of B bits to B — 1 bits will require reducing the number 
of sparsity components from K  to K /4. The logarithmic expression of the error cane 
be written as

e2 =  10log10( |Xr — X k ||2) =  3.01 log2 K  — 6.02B — 7.78. (2.60)

2.5.1 Quantization effect analysis

The effect of quantization will be examined in the next two examples.
Exam ple 1: Sparse signal quantization error. The sparse signal reconstruc- 

tion analysis is performed in this example. The signal is of the form

X  (k ) { ^  (1 — K(0), 
0,

for l 
for l

1 , . . . , K  
K  +  1 , . . . ,N ,

(2.61)
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Uniform sampling, A  =  0 Nonuniform sampling, A  =  1 Random sampling, A  0
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Number of bits B

Figure 2.10: Average reconstruction SNR of sparse signals with quantized measurements as 
a function of number of bits B , for various numbers of measurements and sparsity levels 
K  2 { 3, 8,13,18} . The statistical error is presented with dots and the theoretical results 
are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly 
sampled (middle); randomly sampled (right).

with length N  =  256 and the random changes of coefficient amplitudes is uniformly dis- 
tributed in between 0 < k(1) < 0.2. It is considered that NA =  128 available measure- 
ments are quantized. The quantization levels to bits B 2  {4, 6,8,10,12,14,16,18, 20, 24} 
and sparsity levels K  2  {3, 8,13,18} are analyzed.

The average statistical and theoretical signal-to-nose ratios SNRst and SNRth 
values are shown in Fig. 2.10. The results are averaged over 300 realizations. The 
statistical error SNRst is presented with black dots, and the dash-dot lines are the 
theoretical errors, SNRth. It can be concluded that the results are of high agreement.

Exam ple 2: Nonsparse signal quantization error. The signal is modeled as

PNa (1 -  k(/)), for l =  1 , . . . , K
*  (2.62) 

e x p (- l /8 K ), for l =  K  +  1 , . . . , N.

The length of the signal is N =  256 and the andom uniform changes of coefficient 
amplitudes is assumed to be between 0 < k(1) < 0.2. In order to reduce its influence to 
the quantization level, the amplitudes of the coefficients X (k) for kt 2 K are X(kt) =  
e x p (- l /(8 K )). In that case, the effect of quantization influences the reconstruction 
procedure when up to B =  14 bits are used. The enery cause by the nonsparsity is 
dominant for the case when B > 16. The results are presented in Fig. 2.11, proving a 
similar results of the statistical results with the theoretical error.

X  (ki)

2.6 Noise folding

Another important issue is the analysis of the quantization noise in the transform 
coefficients prior to taking the measurements [62]. This noise is called the quantization 
noise folding and it will be denoted by z. Then, the measurements are of the form

y b +  e =  A (X  +  z ) , (2.63)
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Uniform sampling, A  =  0 Nonuniform sampling, A  =  1 Random sampling, A  0
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Figure 2.11: Average SNR of the reconstruction of nonsparse signals with quantized measure- 
ments as a function of number of bits B , for various numbers of measurements and sparsity 
levels K 2  {3, 8,13,18}. The statistical error is presented with dots and the theoretical results 
are presented by dot-dashed lines: when the signal is uniformly sampled (left); nonuniformly 
sampled (middle); randomly sampled (right).

which can be rewritten in the form of

y B +  v =  A X  (2.64)

where v =  e — Az. The value e is the quantization noise which affects the signal 
samples with covariance a^I. The noise vector z is random whose covariance is a^I. 
Note that it is independent of e. Thus, the covariance matrix of the noise v is

C =  a2e I +  a2z A A h . (2.65)

For the partial DFT matrix, the relation A A H =  -N L i holds. The variance of v is then

a'V =  2  + N (2. 66)
NA

with the covariance matrix C =  o\I .
However, when sparse signalas are considered, the quantization error only affects 

the K  nonzero components of X . It means that the noise A z variance is N K ae or

KI|X r — X k =  Kal  +  —  a\ . (2.67)
NA

Finally, for the nonsparse partial DFT matrix case, the error is calculated as

II X r — X k i
K  K

K a  + NvAa2 +  -RA 1 — f h r  G( A> |X — X k ii2 (2.68)

We assume that the quantization of the K  main components in X  moslty influences 
the corresponding part of the error calculation. This relation is statistically checked in 
the next example.
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Exam ple: Error calculation with noise folding. The simulation with non- 
sparse signals affects by noise folding is repeated for 300 realizations using the formula- 
tion from Eq. (2.68). The results are presented in Fig. 2.12, proving a close agreement 
theoretical and statistical results.

Uniform sampling, A  =  0 Nonuniform sampling, A  =  1 Random sampling, A > 0

100

80
/ ■ j i t  i i t

K  =  18

/J
/ #
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40

20 f
N a  =  128

4 8 12 16 20 24

4 8 12 16 20 24
Number of bits B

4 8 12 16 20 24
Number of bits B

4 8 12 16 20 24
Number of bits B

Figure 2.12: Average SNR of nonsparse signals reconstruction with noise folding when various 
number of available measurements is considered, for different sampling methods. Top subplots 
- Na = N/ 4 available samples, middle subplots - Na = N/2, bottom subplots - Na = 3N/4. 
Left subplots - uniform sampling, middle subplots - nonuniform sampling when A =  1, left 
subplots - random sampling when A »  0.



C h a p t e r  3

Wideband sonar signal reconstruction
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Many radar systems are based on a few targets in the signal, showing the potential 
of using the compressive sensing algorithms for their processing. The idea of importing 
the CS theory to the detection of targets and their successful recovery in the radar 
systems was discussed previously in the literature [55,63-66]. In the research, indeed, 
the CS framework is seen as a useful tool for the reconstruction of sparse radar signals. 
Even though radar and sonar systems have many common basic principles, yet the 
application of CS techniques is still relatively new in sonars. Despite the similarity 
in the rules, there are specific characteristics of the sonar systems that need to be 
considered for a successful analysis. The main difference is the environment in which 
they operate, mainly due to entirely different propagation characteristics. This will be 
discussed in more detail later in this thesis.

The complexity of the problem made it difficult for the transmitted signals to be 
anything more than basic forms of sonar signals to be analyzed and used in the recent 
literature. The usage of specific sequence form of these signals has already produced 
promising results in the reconstruction of sonar images. The implementation of CS 
idea to the underwater sonar signals was initially discussed in [67,68]. However, only 
the Alltop sequence was considered a sequence used to form the transmitted signal 
and reconstruct the sonar image with a reduced number of measurements. In [69], the 
results in sonar imaging were improved using the M sequence, as an excellent alternative 
to the Alltop sequence, in forming the transmitted signal waveform.

43
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In this Chapter, we will consider a whole spectrum of various sequences in the 
sonar imaging within the CS to find the best solution to the sonar signal reconstruction 
problem. The considered sequences are the random binary sequence, the random Gaus- 
sian, Bjorck, and Zadoff-Chu sequence, in addition to the Alltop and maximum length 
sequence (M sequence). All these sequences are studied and compared concerning the 
performances notable for sonar imaging within the CS framework.

The implementation of the radar systems was also expanded from narrowband 
[63] to wideband [66]. Although the Alltop and the M sequences were considered 
theoretically, in practice, only the basic forms were considered due to their simpler 
hardware implementation [70]. This challenge will also be taken into account in the 
analysis of real data in the next sections. The main results presented in this Chapter 
were published in [71-74]. In the analysis, it is common to consider the targets on 
the grid. However, in practice, they are off-grid, causing even the targets with a small 
number of reflecting points to be only approximately sparse when considered in sonar 
signals. This effect of image leaking due to the off-grid impacts influences the CS 
reconstruction. It has been examined by extending the analysis of approximately sparse 
and nonsparse signals from the previous section.

We tackle one more problem in this Chapter: the decomposition of two misaligned 
receivers for two close components. It will be shown that the problem can be successfully 
surpassed using high-resolution techniques in time-frequency analysis.

3.1 General sonar signal modelling

A typical model of a transmitted wideband sonar signal is of form

=  s ( - 0  exp(j 2nfct), ( T 1)

where s(|) is the transmitted form of the sequence. The sequence is coded within the 
width A, 0 < t < NA, and modulated with the carrier frequency f c. The received signal 
is a delayed and attenuated version of x(t). If one target is considered, i.e., if K  =  1, 
the received (echoed) signal is formed as

r i (t) gs\
(t -  t)c—v v '
A ) exp [ i  2 f  (t -  t )c — V

(3.2)

where v is the velocity of the target, c is the underwater speed of sound, and g is a 
complex-valued scattering coefficient. Due to the Doppler effect, the received signal is 
scaled in frequency for (c +  v) / ( c  — v). Additionally, it is shifted in time for a value t .

The signal is sampled according to the sampling theorem at instants n A t , with 
A t  being the sampling interval. The discrete received signal, when K  > 1 targets are 
considered, is the sum of K  received discretized components of form (3.2). That is

K
r ( n )  =  ^ 2  g * i s ( n  — 4 ; ) e x p ( j uk . n j ,  (3.3)

i=1
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where s(n — dki) is the circular shift of the sequence. The parameter dki presents 
the time delay r which is defined by the range of the targets. The parameter ! ki 
corresponds to the cross-range of targets corresponding to the frequency shift. The 
details of this derivation are given in [67, 68]. If we consider the targets to be on the 
grid, the coordinates are then taken from the finite set

(dp, ! q) 2 { di, d2, . . . ,  dN} X •••, ! N} (3.4)

where dp takes values from dp 2 {d ,̂ d2, . . . ,  dN} and ! q 2 {cc ,̂ ! 2, . . . ,  ! N}, making it 
a total of N 2 of possible positions of the targets. If the targets are off-grid, they will 
spread over several points, with the most significant influence on a few neighboring grid 
points. The off-grid effects cause the analyzed signals to be only approximately sparse. 
In the analysis we will first assume that the targets are on the grid, as it is common in 
literature, and then analyze the effects of sparsity degradation due to off-grid sampling.

For a pair (dp, ! q) =  (p, Nrq), the basis function can be calculated as

0p,q (n) s(n — p') exp ( j 2r q j ; j (3.5)

and received is the signal
K

r ( n) =  Y l  9ki 0Pi ,qi ( n) . (3.6)
i=1

The relation between the indices for the scatterer k, and range and cross-range positions 
p and q is

k =  p +  N q ,

p  =  k  — N  [k/Nj ,  (3.7)

q =  Lk/N j >

where p =  0 ,1 , . . . ,  N —1, q =  0 ,1 , . . . ,  N —1, k =  1 ,2 , . . . ,  N 2 — 1, and [ k / N j  presenting 
the rounding of k /N  to the closest lower integer value.

The periodic autocorrelation (AC) function of the sequence s(n) is defined as

N
Rs(n) =  s(n +  m)s*(m) (3.8)

m= 1

Note that the AC function is associated to the coherence index p  from Eq. (1.50), as 
it will be seen later in the chapter.

3.1.1 R elation to  com pressive sensing

Taking into account the nature of the received signal, it can be analyzed as a signal in 
the representation domain with basis functions

fik (n) =  s(n — dk-i) exp (j!k-, n ) , (3.9)
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and rewritten as K
r(n) =  Y l  gki^ki (n) (3-10)

i= 1
or in matrix form

r =  $ g , (3.11)

The vector r is the received column vector of the echoed signal, and $  is the matrix 
with basis functions. The scattering coefficients g(k) =  gk are within the column vector 
g =  [g(0 ) ,g ( l ) , . . .  ,g(N 2 -  1 )]T.

In the compressive sensing sense, if the signal g consists of only few target points, 
it means that there are only K  nonzero coefficients in the full N  x N  matrix, with 
K  ^  N . Then, the signal is considered as sparse. Since it is sparse, it can be recovered 
from the received samples y

y =  [r (n i) , r (n2 ) , . . . , r (nwA )]T (3.12)

or

y =  A g (3.13)

where the elements of A  are from (3.5), i.e.,

ak,i =  s(n4 -  dp) exp j q n ĵ , (3.14)

For a given scattering point, positioned at k, dp corresponds to the rearranged range 
coefficients and ! q is for the rearranged cross-range coefficients. Note that, since N 
samples are transmitted, and the results lies in the area of N x N points, the number 
of measurements is naturally Na =  N .

As mentioned in previous chapters, the initial estimation of the signal is performed 
using the available observations

go =  A H y  (3.15)

or in element-wise form
go(k) =  Y  r(ni)a*k,ni. (3.16)

ni2 Na

If r(ni) is replaced according to (3.10), we get
K

g0(k )^ Y  Y g k i  ̂ PiAi (ni)ak,ni. (3 1̂7)
ni 2 Na i= 1

Denoting the term^ n ieM 0Pi,qi (ni)ak,ni by h (k  ki)

Mk, ki) =  X  ,q, (ni)aj,n, =  X  s<"'i -  dk )s*(ni -  p j --- ^ , (3,18)
ni 2 Na ni 2 Na
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the initial estim ate will be
K

9 o { k )  =  ^ 2  9 ki (3-19)
i= 1

For a random  set o f  measurem ents, the values p ( k , k ) and g 0{ k )  are random  vari- 
ables [53,75]. If the calculation  is perform ed over all samples, i.e., n  =  0 , 1 , 2 , . . . ,  N  — 1, 
we get

N - 1
p ,(k ,k i) =  Y ,  s ( n  — d k ) s * ( n  — p ^ e J 2^ - ^ / N . (3.20)

n=0

It is im portant to  note that, even by  taking all samples, the set w ith  m easurem ents is 
small. T hat dem ands the use o f  CS based reconstruction  algorithm s since the num ber 
o f  possible target positions is N  x  N  =  N 2 ^  N A =  N .

T he m axim al absolute value ^ (k , k ), for k =  k ,̂ is associated to  the coherence index 
o f  the m easurem ent m atrix  from  (1 .5 0 ), which, as m entioned, defines the condition  for 
a unique signal reconstruction. T he uniqueness condition , as seen in (1.52) is K  <  

(1  +  1 /M > /2 .
In the case when all samples are taken, the analysis o f the m axim al absolute value 

^ (k , k i) for q ki =  qk is reduced to  the analysis o f the A C  function  (3.8)

N -1
M k , ki) =  ^ 2  s ( n  — d k) s * ( n  — p i ) ,  for qi =  q. (3.21)

n=0

A  g ood  reconstruction  perform ance in the com pressive sensing sense can be expected  
when the m axim um  absolute value o f side lobes o f the A C  function  | ^ ^=0 s (n — 
dk)s*(n — 'Pi)| are m inim ized (for dk =  p )̂. A lthough  strict, the coherence index p (k ,  k ) 
can indicate the quality o f  recovery we m ay expect from  a certain sequence.

T he w hole expression for p ( k ,  k )  and k =  k  reduces to  the analysis o f the am bi- 
guity function  (A F ) [76] which is defined as the tw o-dim ensional F T  o f the R ihaczek 
distribution N -1

A F ( n ,  r )  =  ^  s (n +  m ) s * ( m ) e j2nrm/N, (3.22)
m=0

for all n and r. It can be seen that (3.22) equals the A F  o f  the R ihaczek distribution  
o f  the sequence [5, 6]. Then, the analysis o f p ( k , k i) reduces to  the estim ation  o f the 
m axim um  value o f |A F (n , r )| for (n, r ) =  (0, 0), For (n, r ) =  (0 , 0), the results is 
A F (0 , 0) =  p ( k ,  k )  =  1. This step will be im portant in the case o f  tim e-varying signals, 
w hich is discussed in Section 3 .4 .

3 .1 .2  S e q u e n c e  fo r m s  a n d  p r o p e r t ie s

In the literature, on ly  the basic signal processing forms are used, such as the L F M  signal, 
for underwater transm ission [70]. Instead o f the basic form s, there are a vast o f  other
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sequence forms which can be used for the transmission in sonar systems. Some of them 
will be represented with their key properties and further examined for the usefulness 
in the transmission. Six of them are presented in the next definitions. Discrete-time 
sequence, of length N , is denoted by s(n), n =  0 ,1 , . . . ,  N — 1.

D e f in it io n  3 .1
The Gaussian seguence is formed as

s(n) ~
T N N  ( 0 ' 1 }.

(3.23)

The Gaussian sequence is one of the most commonly used sequence forms, whose 
properties are well known in the literature. The auto-correlation (AC) of the Gaussian 
sequence is

Rs(n) =  E {s(n +  m)s(m)} =  8(n — m). (3.24)
Note that the AC function takes an approximative form for finite-duration sequences. 
The samples of the Gaussian sequence have to be uncorrelated.

D e f in it io n  3 .2
The binary Gaussian sequence is formed as [77]

s(n) ~ y N  siSn (N (0 , 1)y) . (3.25)

The signum of the Gaussian sequence is a simpler yet effective form of the Gaussian 
sequence, resulting in only the sign part of the measurement. It may be considered as 
a binary random sequence.

D e f in it io n  3 .3
The Alltop sequence is first presented in [63, 67]. It is formulated in the form of

1 3
s(n) =  - =  eJ j2  J -. (3.26)

y / N

The property of this sequence is the small intensity of the side lobes in the auto- 
correlation function, which are in the order of 1 j j L . For the aperiodic AC function, 
the side lobes are approximately similar to 1  / J L  as well.

D e f in it io n  3 .4
The Bjorck sequence, for a prime number N > 2, N =  1( 
as [78, 79]

s(n) exp
y / N

( j  [(n/N)] arccos ( ---------------

mod 4), is formulated

(3.27)

where [(n/N)] is the Legendre symbol that takes values ±1 and 0 as

{0, for n =  0 mod N 
+  1, for n is a qudratic residue mod N 
— 1, for n is a qudratic nonresidue mod N.
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The Bjorck sequence, for a prime number N > 2, N =  3( 
as [78, 79]

s ( n )
( pN exP ( j  arccos 
[ l ,  otherwise.

( i +n ) )  > if [ (n/N)h

mod 4), is formulated

l
(3.28)

D e f in it io n  3 .5
The maximum length sequence (or M  sequence) is a pseudo-random binary se- 
quence, generated with linear-shift register using the recursive formula [80]

N
s (n ) =  c ms (n  — m ) . (3.29)

m= 1

The M sequence is a commonly used tool in the area of spread spectrum techniques 
in digital communication systems. The two most frequently used systems are the direct- 
sequence and frequency-hopping spread spectrum. Usually, it is normalized to get the 
energy in the N samples equal to one. The values of the M sequence, — 1 /v N  and 
l / v N , occur approximately equal times. For the sequence of length N =  2m — 1 the 
number of 1 /v N  values is N/2, while the number of —1 /v N  values is N /2 — 1.

The periodic AC function of the M sequence is of the form

Rs (n)
j  1, for n =  kN 
) — 1/N, elsewhere.

(3.30)

In the CS theory sense, the coherence indices of the measurement matrices formed 
from the M sequences and the Alltop sequence are identical.

D e f in it io n  3 .6
The Zadoff-Chu sequence is formed as [81, 82]

s ( n )
V N  e x p  

V N  e x p

■ 2-kj n(n+2Q)\ 
j  N 2 Ĵ
■ 2ky n(n+1+2Q)

j  N 2

N even, 

N odd.
(3.31)

where 7  is integer such that the greatest com,m,on divisor gcd(y, N ) =  1  and Q is 
arbitrary integer.

The discrete sequence forms in one cycle are shown in Figure 3.1 (left). Their main 
properties depend on their AC functions, shown in Fig. 3.1 (right). Note that, except 
for the Bjorck sequence (where the imaginary part is taken), we take the real part of 
all of them. Also note that, the Bjorck and Zadoff-Chu are part of the group of the 
so-called constant amplitude zero auto-correlation (CAZAC) sequences, since the side 
lobes of their periodic auto-correlation function are almost zero-valued [83,84].

The absolute values of the ambiguity functions of the six sequences are shown in 
Fig. 3.2 (left). Even though Zadoff-Chu is a CAZAC sequence, showing good AC
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Figure 3.1: The transmitted disrete-time sequence forms s(n) (left); The corresponding auto- 
correlation functions of the six sequences (right).
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properties, it produces values A F (m ,r ) =  1 for (m,r) =  (0, 0). It can be seen from 
Fig. 3.2 that it cannot be used for the analysis in the wideband sonar signal case. This 
will be further discussed. The sequence forms with a reduced set of measurements is 
shown in Fig. 3.2 (middle) and their corresponding AFs are shown in Fig. 3.2 (right).

3.2 Sequence selection

T he selection o f the sequences will be decided upon  their reconstruction  perform ances 
in various cases w ith different exhaustive statistical param eters. T he sonar signal is 
represented by various num ber o f com ponents (sparsity level K ) and different num ber 
o f  available m easurem ents in a signal. F ive cases for statistics were considered before 
taking the decision o f the m ost convenient sequence form.

C a s e  1: P e r c e n t a g e  o f  d e t e c t e d  ta r g e ts .

Since our goal is the right targetting o f the ob jects , the first experim ent is based 
on  the percentage o f  detected  com ponents in the signals. Consider 1000 repetitions o f 
the experim ent using the signal o f  the form  (3 .1 ). W e consider that the transm itted 
signal is o f  length N  =  31, which is the equivalent to  the num ber o f  available samples,
i.e. Na  =  N . T he num ber o f  target com ponents (w hich is equivalent to  the sparsity 
level) is in the range 1 < K  < 20.

This case experim entally shows that the Zadoff-C hu sequence is not suitable for 
the detection  o f com ponents. In the case when a small noise is present in the signals, 
the B jorck  and the M  sequence show better results. In the case when the noise is high 
(i.e. SN R =  5dB  and S N R = 0d B ), all sequences show similar results.

C a s e  2: E r r o r  c a lc u la t io n .

M any problem s w hich can arise in practice will cause a signal to  be nonsparse. 
T he m ost realistic case is that the received signal is o ff the grid, m aking the targets 
random ly positioned. A ccord ing  to  Chapter 2 , for the sonar signal case, the theoretical 
error is

Et =  10log ( ( +  i) ||g- g K ||2 +  K ^ • (3 .32)

where g K is the vector o f  the same length as g , w ith  the K  nonzero targets at their 
positions and zero-valued everywhere else. T he statistical error is calculated as

Es = 10log ( ||g - g R |l2 )• (3 .33)

T he test is perform ed w ith 100 random  realizations o f nonsparse images. T he signal 
length is N =  31 w ith K  =  5 target points. T he available num ber o f m easurem ents 
is Na  =  N . Table 3.1 presents the statistical and theoretical results for each sequence 
form  and tw o different noise levels.
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F ig u r e  3 .2 : T h e  a m b ig u i t y  fu n c t io n s  o f  th e  f u l l  se q u e n ce s  ( le f t ) ;  T r a n s m i t t e d  s e q u e n c e  fo rm s  
w i t h  a  re d u c e d  se t m e a s u re m e n ts  N a  <  N  ( m id d le ) ;  T h e  A F s  o f  th e  se q u e n ce s  w i t h  re d u c e d  
se t o f  a v a i la b le  s a m p le s  ( r ig h t ) .
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F ig u r e  3 .3 : T h e  p e rc e n ta g e  o f  s u c c e s s fu lly  d e te c te d  t a r g e t  p o s i t io n s  in  1 0 0 0  re a l iz a t io n s ,  fo r  
0 <  K  <  2 0  a n d  n o is e  le v e ls  o f  S N R s =  2 0 , 5 ,0  d B .
T a b le  3 .1 : A v e ra g e  r e c o n s t r u c t io n  e r r o r  o f  n o n s p a rs e  im a g e s  w i t h  K  =  5 ta r g e t  p o in ts ,  N a  =  

N  =  31 a n d  S N R =  2 0 , 5 d B .
S N R =  2 0 d B G a u s s ia n B in a r y M  seq. A l l t o p B jo r c k

S ta t is t ic s
T h e o r y

- 1 2 . 4 3
- 1 2 . 3 5

- 1 2 . 3 5
- 1 2 . 4 2

- 1 3 . 5 7
- 1 3 . 6 2

- 1 3 . 4 2
- 1 3 . 6 9

- 1 2 . 6 2
- 1 2 . 8 8

S N R =  5 d B G a u s s ia n B in a r y M  seq. A l l t o p B jo r c k
S ta t is t ic s
T h e o r y

- 0 . 9 6
- 0 . 8 3

- 0 . 8 8
- 0 . 9 3

- 1 . 5 2
- 1 . 6 1

- 1 . 3 7
- 1 . 9 2

- 0 . 8 3
- 1 . 0 1

C a s e  3 : R o b u s t n e s s  o n  n u m b e r  o f  a v a ila b le  m e a s u r e m e n ts .

In the previous cases we use NA =  N . Here, we will consider the number of 
available samples NA that can be higher or lower than the length of the transmitted 
signal N . That is, we consider the case when NA =  N . Assume N =  31, with NA 
varying as Na =  8 , . . . ,  3N , taking the prime numbers. The results in 100 realizations 
for the Bjorck, Alltop and M-sequence, are shown in Fig. 3.4, Fig. 3.5, and Fig. 3.6, 
respectively. For each sequence, noise levels of SNR= 20, 5,0 dB are considered.

C a s e  4 : R a n d o m ly  p o s i t i o n e d  ta r g e ts .

The three most robust sequence from the previous cases, Alltop, maximum-length 
and Bjorck, are further analyzed. Consider that six real targets are positioned randomly 
in an area of interest. More false targets are arriving due to different reasons, making the
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F ig u r e  3 .4 : S u c c e s s fu l r e c o n s t r u c t io n  p e r fo r m a n c e  o f  th e  B jo r c k  se q u e n ce  fo r  d i f fe r e n t  s p a r s i ty  
le v e ls  K , n u m b e r  o f  m e a s u re m e n ts  ta k e n  N a  a n d  n o is e  le v e ls  w i t h  S N R s =  20 , 5 d B  ( u p p e r  
ro w )  a n d  S N R = 0  d B  ( lo w e r  ro w ) .

area nonsparse by  nature. Additionally, the environm ent is noisy the level o f S N R = 10  
dB . T he noisy and nonsparse interest area is presented in Fig. 3.7 (top  left). The 
reconstruction  using the B jorck  sequence is illustrated in Fig. 3.7 (top  right). The 
reconstruction  when M  sequence and A lltop  sequences are used are presented in Fig. 
3.7 (b o ttom ).

C a s e  5: R e a l -w o r ld  s e t -u p .

In Fig. ? ?  (top  left) an underwater boat set-up is m odeled. W e assume the sparsity 
level is the num ber o f target points needed to  m odel the boat. Assum e the num ber is 
K  =  14, as counted in Fig. 3.8 (top ). Since the num ber o f points is high, the sequence 
o f  length N  =  31 cannot be used. T he next available sequence length, satisfying 
the conditions for all three considered sequences (A lltop , B jorck  and M  sequence) is 
N  =  127. Assum e a noise level o f  S N R = 15  dB . T he reconstruction  when the M  sequence 
is used is presented in Fig. 3.8 (top  right). T he reconstruction  results w ith  the A lltop  
and B jorck  sequences are shown in Fig. 3.8 (b o ttom ).
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F ig u r e  3 .5 : S u c c e s s fu l r e c o n s t r u c t io n  p e r fo r m a n c e  o f  th e  A l l t o p  s e q u e n c e  fo r  d i f fe r e n t  s p a r s i ty  
le v e ls  K , n u m b e r  o f  m e a s u re m e n ts  ta k e n  N a  a n d  n o is e  le v e ls  w i t h  S N R s =  2 0 , 5 d B  ( u p p e r  
ro w )  a n d  S N R = 0 d B  ( lo w e r  ro w ) .

3.3 Real-data reconstruction

In this section, the challenge o f the real data is analyzed. In sum m ary o f Section  3.2, 
considering all cases, the B jorck  sequence resulted in the best solution for further work. 
Therefore, it will be used for the next experim ents. It is concluded that the Zadoff-C hu 
sequence, due to  its quadratic nature, failed in the reception  and reconstruction . A lso, 
the A lltop  and M  sequence perform ed very g ood  and gave similar results. Therefore, 
for the practicality  in the im plem entation, the A lltop  and B jorck  sequences will be used 
for the next experim ents.

A n  underwater experim ental setup is created in the room s o f the G IP S A  L aboratory  
at IN P Grenoble. A  water tank o f 2 cu b ic m eters was used for the experim ent. A n  
interferom eter transducer is used for the transm ission and reception  o f signals. The 
interferom eter was supplied by the “IT E R  System s” com pany from  Annecy, France, 
w ith  the operating frequency o f  468 kHz, and 100 kHz bandw idth. N ote that the 
sequences are m odulated to  satisfy the operating frequency range o f the transducer.
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F ig u r e  3 .6 : S u c c e s s fu l r e c o n s t r u c t io n  p e r fo r m a n c e  o f  th e  M  se q u e n ce  fo r  d i f fe r e n t  s p a r s i ty  
le v e ls  K , n u m b e r  o f  m e a s u re m e n ts  ta k e n  N a  a n d  n o is e  le v e ls  w i t h  S N R s =  2 0 , 5 d B  ( u p p e r  
ro w )  a n d  S N R = 0 d B  ( lo w e r  ro w ) .

T he transducer has one transm itter sensor and four receiver sensors. However, since 
the goal is to  exam ine the robustness o f  the CS theory  to  the real data, the results will 
be analyzed from  on ly  one receiver. T he transducer was fixed under the angle o f  30o 
close to  the water surface. T he setup o f the water tank, and the individual instruments 
used for the experim ent are presented in Fig. 3 .9 . T he b lock  diagram  follow ed for 
the experim ent is illustrated in Fig. 3 .10 . A ccord in g  to  the b lock  diagram , the setup 
includes steps such as the interpolation , m odulation , filtering, and pow er am plifying o f 
the sequence. W hen  the signal is received, the CS m ethods are applied.

T he target as in Fig. 3.9 (b o ttom  left) was put at the tank floor. T he position  
o f  the target to  the transducer is illustrated in Fig. 3.11 and the real setup is shown 
in Fig. 3.9 (b o ttom  right). T he A lltop  and the B jorck  sequences are transm itted, 
m odu lated  and interpolated, as in Fig. 3 .12 . T he received signals, when A lltop  and 
B jorck  sequences are used, are shown in Fig. 3.13 (first tw o rows). For com parison, a 
chirp sequence as in [70] is transm itted also. T he result, when the chirp sequence is 
used, is shown in Fig. 3.13 (third row ). T he reconstruction  using the m atched filter
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Real (nonsparse) target area of interest
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Reconstruction, Bjorck sequence
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Figure 3.7: The reconstruction of a noisy nonsparse target area, with noise level of SNR=10dB 
and target points K = 6 : The nonsparse area of interest (top right); Reconstruction when 
Bjorck sequence is used (top right), when M sequence is used (bottom left), and when Alltop 
sequence is used (top right).

(M F ) is shown in Fig. 3.13 (m iddle colum n). T he reconstruction  using the iterative 
version o f the O M P  algorithm  is shown in Fig. 3.13 (right colum n).

3.4 Time-varying cross-range detection

In the exam ples considered in previous sections, the velocity  is defined as constant, and 
therefore stationary. In m ore realistic cases, the cross-range (velocity ) is varying and 
has to  be detected  so that the target can be successfully and truthfully found under 
this setup. If the cross-range param eter is m isdetected , the exact position  and velocity  
o f  the target will not be estim ated accurately, leading to  an incorrect reconstruction.

T he tim e variations o f target velocity  can be w ritten as v  +  a t .  Target velocity  
corresponds to  the cross-range o f the received signal. Having the received signal in the 
form

K

r ( n ) =  Y l  9 ki ^ki (n ) (3 .34)
i= 1
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Figure 3.8: The reconstruction of an underwater boat set-up, with noise level of SNR=15dB 
and target points K = 14: The modelled area of interest (top right); Reconstruction when 
M sequence is used (top right), when Bjorck sequence is used (bottom left), and when Alltop 
sequence is used (top right).

will have the basis functions as

<pki(n) =  s(n -  dki) exp n + j a kin2 ) . (3.35)

According to (3.5), the basis function is

(pv ,q (n) =  s(n -  p) exp j 2n qNN +  j a n2^j. (3.36)

for (dp , ! q ) =  (p, q). The elements of the measurement matrix are then

ak,i =  s(ni -  dp ) exp ( j ! qm + j a nf^j. (3.37)

3 .4 .1  D e c o m p o s i t i o n  a n d  r e c o n s t r u c t io n

T he technique for decom position  o f targets in sonar signals is inspired by  the idea o f 
decom position  o f tim e-varying signals using the polynom ial Fourier transform  (P F T ) 
in [85]. T he estim ation  o f the param eter corresponding to  the cross-range in w ideband
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Figure 3.9: Real water tank setup: Water tank (top left); Transducer (top right); The shape 
of the target (bottom left); Position of the target and transducer in the water (bottom right).

sonar signals is the aim of this analysis. When a  = a, the CS reconstruction will 
be successful. The parameter a 2  a  in ^ (k, k ) is varied until the signal is maximally 
concentrated, i.e.,

a =  argmax |g 0a (k )|. (3.38)
(k,a)

The solution of (3.38) is when a is equal or close to the true value of a. The set a  
represents the set of possible values for a .

For more target points (K  >  1), the procedure is as follows:
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Figure 3.11: Illustration of the water tank setup: the position of the target to the transducer, 
with an elevation angle of 30o.

Transmitted signal (Alltop sequence) Transmitted signal (Bjorck sequence)

Time(s) x l0 -5 Time (s) x l0 -5

Figure 3.12: Real transmitted sequence forms, interpolated and modulated to operate under 
the transducer characteristics: Alltop sequence (left), and Bjorck sequence (right)

• T he set o f  possible param eters a  is defined.

• T he initial estim ate, g0 (k ), is calculated for each value a  2  a .

• T he param eter a  is found in such a way that the initial estim ate is concentrated 
the best by  using (3 .3 8 ).

• T he value o f y ( k , k i ) is calculated using the determ ined param eter.

• T he first com ponent o f  g R is reconstructed w ith y  and ^ (k , k ).

• T he reconstructed com ponent is rem oved from  the initial estim ate, g 0 — g R .

• T he previous steps are repeated w ith the reconstructed com ponent rem oved from  
y , until all the param eters are determ ined and all K  elements are reconstructed.

A s an exam ple, the analysis is perform ed using the A lltop  sequence. T he area o f 
interest is nonsparse and noisy, w ith K  =  6  im portant target points and SN R o f 10 
dB. T he procedure is shown in Fig. 3 .14 . T he original interest area is shown in Fig. 
3.14 (top  left). T he reconstruction  result is illustrated in Fig. 3.14 (b o ttom  right). 
T he steps o f  the initial estim ates for each target point are presented in the rem aining 
subplots o f  Fig. 3 .14 .
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Figure 3.13: Received signal - real data: Received signals with different sequence forms (left), 
reconstruction with matched filter (middle), reconstruction with compressive sensing (right); 
when the Alltop sequence is transmitted (top); when the Bjork sequence is transmitted (mid- 
dle); when the chirp sequence is transmitted (bottom).
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3.5 High-resolution decomposition

A nother issue in the decom position  o f signals is the separation o f closed com ponents 
(targets). This can be solved by  using high-resolution techniques developed for that 
m atter. In practice, the h igh-resolution techniques are frequently used in the direct- 
of-arrival (D O A ) estim ation  in the field o f array signal processing [7, 85]. T h ey  can 
also be used in various engineering problem s [7,86-8 9 ] , such as the m isalignm ent o f the 
sensors [90]. Tw o o f the m ethods, w hich have shown in the literature to  produce reliable 
results in separation, are C a p on ’s m ethod  and M usic Signal C lassification (M U SIC )
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Figure 3.14: The reconstruction of a nonsparse target area, with K = 6 main target points.. 
The noise level of the area is SNR=10dB: Original area of interest (nonsparse) (top left); 
Reconstructed target area (bottom right); Initial estimations for each target points (remaining 
subplots).
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technique. T h ey  will be presented in the form  that is adjusted for im plem entation 
using the tim e-frequency representations.

3 .5 .1  P r o b le m  fo r m u la t io n

Consider a L F M  signal as a com m on  case o f a transm itted signal form

s (t ) =  A (t ) exp ( j 2 n ( Q 0t  +  c h t 2 ) )  (3.39)

where A (t ) is the am plitude (slow -varying), is the initial frequency and ch is the 
chirp rate. T he discrete signal s (n ) w ith sam pling interval A t is o f the form

s ( n )  =  A ( n A t )  exp ( j 2 n ( n Q 0 A t  +  n 2ch(A t )2)) .  (3.40)

In Fig. 3 .15 , tw o schemes are presented. W h en  the receiver is properly  aligned 
w ith  transm itter, as shown in Fig. 3.15 (a), the received signal will be an attenuated 
and delayed version o f the transm itted signal. T he problem  arises when the receiver is 
not properly  aligned w ith  the transm itter. This is shown in Fig. 3.15 (b ). T he solid 
line represents how the signal was received, while the dashed line illustrates how the 
signal was supposed to  be received.

Figure 3.15: The positions of the sensor: when the sensor is properly aligned with the receiver 
(top); when the sensor is misaligned (bottom). Solid line represents the actually received 
signal.

T he m isalignm ent causes false estim ation  o f positions o f the physical sensors [90]. 
A lso, vibrations in the environm ent can cause the sensors to  m isalign. T he signal will 
then change through the channel due to  the dispersive nature. T he received signal
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will change in both time and frequency. If the received signal is assumed from two 
propagation paths, it will be received as

r(n) =  sr(n) * h\(n) +  sr(n) * h2(n) (3.41)

where is the convolution of sr(n) with two transfer functions h\(n) and h2(n), coming
from the two propagation paths, respectively.

In general case, for two transfer functions, the received signal consists of two com- 
ponents. For t\ ~  t2, the received signal is a modulated version of the transmitted 
signal, i.e.,

r (t )  ~  2A (t) c o s (2^c (+ — t2)t +  cos (2 n ( Qt  +  c t 2 ) ) . (3.42)

A  special case is when the received signal consists o f  tw o tim e-shifted versions o f  the 
transm itted signal

r (t )  =  Sr (t — t i )  +  Sr (t — t2). (3.43)

T he signal, w ith its corresponding spectrum , is presented in Fig. 3.16 (top ). The 
received signal and its corresponding D F T  dom ain, are shown in Fig. 3.16 (b o ttom ). As 
seen, the tw o received com ponents are closely  positioned  in both  tim e and frequency. 
T he aim  is to  separate them  in order to  successfully reconstruct the original (trans- 
m itted) signal. N ote that the signal attenuation is neglected since our m ain interet is 
the signal form , which will make the calculation  o f  the attenuation caused during the 
transm ission easier.

3 .5 .2  H ig h -r e s o lu t io n  t e c h n iq u e s

Recall the normalized STFT with a rectangular window of the width N

N-1
STFT ( ! ,n )  =  N  ^  x(n + nw)e - Nnw!  a H(u)x (n),

m = 0
N

(3.44)

where the vector notation of the basis functions and the signal are

a ( ! )  =  [1 , e- j ! , e-2 j ! , . . . ,  e-(N -1)j!]T 
x (n) =  [x(n),x(n +  1) , . . . ,  x(n +  N — 1)]T.

Note that the value !  is introduced instead of Nk to increase the frequency axis density, 
necessary for using the Capon’s and MUSIC high resolution techniques.

D e f in it io n  3 .7
T h e  averaged Capon’s STFT i s  d e f i n e d  a s  [ 9 1 , 9 2 ]

SCAPON(n> ! ) =
1

a H ( ! ) R - 1 (n)a ( ! )
(3.45)
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Figure 3.16: Transmitted signal with its spectrum (top); The received signal when the sensors 
are misaligned (bottom).
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w h e r e

R * (n) =  N  X  x (n)x H ( n ) ,  (3.46)
n

i s  t h e  a u t o c o r r e l a t i o n  m a t r i x  o v e r  N  s a m p l e s  ( e r g o d i c i t y  o v e r  N  s a m p l e s  a r o u n d  n  

i s  a s s u m e d ) ,  w h i c h  c o m e s  f r o m  t h e  p o w e r  o f  t h e  s i g n a l  i n  t h e  S T F T  r e p r e s e n t a t i o n  

d o m a i n .

By the eigenvector decomposition, the autocorrelation matrix can be written as

R x ( n ) =  N  X  x ( n ) x H ( n )  =  A ( n ) Y H ( n ) ,  (3.47)
n

where A(n) is the diagonal matrix with eigenvalues on its diagonals and V (n) is the 
matrix whose columns are eigenvectors of the matrix lRx (n).

D e f in it io n  3 .8
T h e  averaged M U SIC STFT i s  d e f i n e d  a s  [ 9 3 ]

S u u s i c ( n , ! )
a H( ! ) v H (n ) V se (n )a (!)

(3.48)
1

w h e r e  V Se (n) i s  t h e  e i g e n v e c t o r  m a t r i x  w i t h  S e e i g e n v e c t o r s  w i t h  l o w e s t  S e e i g e n v a l u e s .
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For a signal with time-varying component, the local form of the PFT and corre- 
sponding STFT (local polynomial FT - LPFT) should be used with any of the high- 
resolution techniques [7]. Let us consider a signal with quadratic phase

x(n) =  Aej(aon2+!on+(p0). (3.49)

As in the case of polynomial Fourier transform, the Capon high-resultion method 
can be further expanded to the LPFT by calculating the autocorrelation matrix with 
a signal multiplied by an exponential factor exp( - j a n 2w ), i.e.

x a ( n w ) =  x ( n w ) e ~ 3an™. (3.50)

The parameter a  is estimated as the maximal concentration value of

L P F T a(k , n ) =  N  a H (! )xa(n ) (3.51)

as
a  =  argmax |LPFTa( ! ,  n)|. (3.52)

For the optimization of the parameter, we can use the concentration measures such as 
a  =  argmin« ||LPFTa(!,n)||i. Since the LPFT is biased in amplitude when greatly 
concentrated, it would not be appropriate to use it for the concentration comparison 
of different parameters a. Therefore, for the comparison, the standard LPFT is used. 
The local AC function is calculated using a sliding window function with the optimally 
found parameter a

R x (+  N w^  a )
1

N w  +  1

n+Nw/2
^   ̂ x a ( nw )xa (nw)

nw = n NW ̂  2

where Nw is the width of a symmetric sliding window.

D e f in it io n  3 .9
T h e  o p t i m a l  local Capon’s representation i s  d e f i n e d  b y  [ 7 , 9 2 ]

L P F T c a p o n  ( n ,  u )
1

aH(k)R - 1 (n, Nw, a )a (^)

(3.53)

(3.54)

In the same way, the local representation of the MUSIC algorithm can be presented 
by using the eigenvectors of the autocorrelation function of the windowed signal x(nw).

3 .5 .3  E x a m p le s

Assume that a signal of the form (3.40) is transmitted, with frequency range between 
f min =  40 Hz and f max =  98 Hz, sampled at frequency f s =  1024 Hz. The decomposi- 
tion of the signal is performed and compared using the standard, Capon’s and MUSIC 
spectrogram, together with their local forms. A rectangular window is used for the
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Figure 3.17: Decomposition of the signal using high-resolution techniques: standard STFT, 
i.e., the spectrogram (top left), standard LPFT (top right), Capon’s STFT (middle left), 
and Capon’s LPFT (middle right), standard MUSIC STFT (bottom left), and MUSIC LPFT 
(bottom right).

analysis o f  local forms. T he w indow  is o f  length N w =  64. For the M U SIC calcula- 
tion, we have used the S e =  100 lowest eigenvectors for the S T F T  decom position , and 
S e =  2 for each w indow ed function  in the L P F T  decom position . T he decom position  o f 
the signal is presented in Fig. 3 .17 . A n  one tim e-instant o f Fig. 3.17 is presented in 
Fig. 3 .18 , where it is visible that the two com ponents can be separated using the local 
form s o f C a p on ’s and M U SIC high-resolution techniques.

From Fig. 3 .17 , it can be seen that tw o com ponents are successfully separated
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Figure 3.18: The spectrum of one time-instant (zoomed) in the standard LPFT (top); in the 
local Capon’s representation (middle) and in the local MUSIC representation (bottom).

by the local form s o f  the high-resolution techniques, i.e. C a p on ’s and M U SIC , while 
other approaches result in aa m odulated  single com ponent signal. From  Fig. 3 .18 , we 
can see that the local M U SIC  representation shows the better result in the sense o f 
distinguishing the tw o com ponents. However, the local C a p on ’s representation is m uch 
stronger and com putationally  m ore efficient for any further analysis.
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T he decom position  and reconstruction  o f signals transm itted through a dispersive 
channel are analyzed in this Chapter. Dispersive channels are characterized by m ulti- 
com ponent and m ulti-phase signals, even when the transm itted signal is o f a simple 
form . T he problem  o f the decom position  and localization  o f  signal com ponent in dis- 
persive channels is an intensively studied research top ic. T he warping techniques have 
shown interesting and prom ising results in the decom position  and reconstruction  o f 
norm al m odes o f the signal. T he characterization o f the signal propagating trough  dis- 
persive channels was also analyzed in [94]. T he problem  o f localization  o f these signal 
using the phase-continuity o f the signal was studied in [95].

A fter the transm ission through a dispersive environm ent, the signal consists o f 
several com ponents called m odes. These m odes are non-stationary due to  frequency 
dependent properties o f the m edia for signal propagation . Therefore, the standard 
Fourier transform  is not suitable for the im plem entation on  such signals. Since the 
frequency variations can be approxim ated by a polynom ia l function, the natural choice 
for the m ethods developed in this thesis is the polynom ial Fourier transform  (P F T ). 
Since the num ber o f  im portant m odes is small, the non-stationary signals in dispersive 
channels can be considered as sparse in the P F T  dom ain. T he analysis o f  the sparse 
signals in the P F T  dom ain is quite specific since the transform ation  basis functions are 
not orthogonal [96]. A fter the P F T  analysis, it has be found that the dual form  o f the 
P F T  is a m ore appropriate dom ain for the analysis o f the signal in dispersive channels.

69
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This form  o f the P F T  is exam ined and the sparsity property  is em ployed reconstructing 
the signal w ith  a small num ber o f available samples.

Since the dual P F T  is on ly  an approxim ation  o f the signal m odes, the next step 
was to  use the exact norm al m ode form  as the sparsity dom ain and the dom ain o f 
analysis o f dispersive channel signals. Therefore, the second considered approach is 
based on  the decom position  o f  the exact m odes o f  the dispersive channel signals. The 
m oda l-function  based decom position  is adapted and used in the analysis at last.

4.1 Shallow water theory and dispersive channels - background

Shallow waters are o f great research interest for m any years [94, 97-1 0 8 ]. Typically, 
shallow waters are defined by  the depth o f the sea /ocea n  which is not greater than 
D  =  2 0 0  meters. A lso, signals traveling through water have a faster speed than signal 
traveling through air (where the speed is c  =  380m /s). T he exact speed o f sound in 
water depends on  m any factors such as the salinity or the tem perature o f  the water, 
but it can be generally approxim ated at c =  1500m /s. This, consequently, makes their 
wavelengths A m uch shorter, usually D  ^  A, w ith  D  being the shallow water channel 
depth. T he reason they attract the researches is the extrem ely com plex  analysis o f such 
setups.

T he com plexity  o f the problem  depends on  m any factors, such as the volum e and 
b o ttom  properties. Further, the noise in shallow water occurs due to  the m any activities 
happening on  the coastlines and surface o f  the sea, which causes cavitations in the sea 
itself. Thus, it can be concluded  that shallow waters are m ore dispersive than deep 
waters. D ispersivity occurs in underwater channels due to  the roughness o f the bottom , 
the strength o f  the waves, the cavity level o f the water and m any other reasons. The 
m ain characteristics o f dispersive channels is that they are frequency dependent. The 
frequency characteristics (phase and spectral content) change during the transm ission 
o f  the signal.

T he propagation  o f sound in shallow water environm ent is m athem atically  repre- 
sented by the wave equations. For the analysis, let consider the wave equation  o f the 
displacem ent potential ^  in free space [99, 109]

V 2^  +
1  dip

C2 št2
0 , (4.1)

where V  presents the Laplacian operator for the considered coord inate system . If the 
Cartesian coord inate r =  ( x , y , z )  system  is assumed, the Laplacian operator is defined 
by

V 2 d 2^  d 2^  d 2^

d x 2 +  @ y 2 +  d z 2
(4.2)

A ccordingly, for the cylindrical coordinates system , w ith  coordinates (r, ✓ , z ), the Lapla-
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cian operator will be

2 1  @ (  d\  1  d2 @2

r 2 =  -  -  ( r  s r ) + -  ̂  ^dr \ @r / r2 d62 dz2
(4.3)

It is usual in the theory that the displacement potential is not azimuth dependent, 
reducing the analysis from (r, 9,z ) to (r, z ).

If we assume a pressure term of a point source (for example, an underwater source,
i.e., a target), the wave equation becomes inhomogeneous

W M )  -  / @ ^  =  f  ( r ,t ) , (4.4)

where f  (r , t) presents the volume injection in coordinate system r at time t. Using the 
Fourier transform pair

1 l'1
f  ( f  =  ^  I F ( ! ) e -I“ ‘ d!

' —1  
pco

F (! )  =  f  (t)ej!tdt
J — 1

we can get a frequency and space domain wave equation

!
V 2 'F ( r  ! )  +  ^ ( r ,  ! )  =  F  ( r , ! ) ,

(4.5)

(4.6)

(4.7)

where ^ ( r , ! )  is the Fourier transform  o f ^ ( r , t )  and F ( r , ! )  is the Fourier transform  
o f  f  ( r ,t ) .  N ote that the Fourier transform  o f @ is equal to  — ! 2 'F ( r , ! ) .  U sing the 
notation

k =  - , (4.8)
c

the H elm holtz equation

V 2,F ( r , ! )  +  k2'F ( r , ! )  =  F  ( r , ! ) , (4.9)

r

2

is obtained.
As an example, we can consider a plane in the Cartesian coordinates along x -axis, 

which does not depend on the coordinates y and z , when the wave equation Eq. (4.9) 
with F (r , ! )  =  0 , assumes the form

It results in the solution

d2xS>(x,! )  
dx2

+  k2l+ (x ,! ) 0 .

'F (x ,! )  =  Aejkx +  Be—jkx

(4.10)

(4.11)
where k =  ! / c  is the wave vector as in Eq. (4.8). When B =  0, the wave is propagating 
directly in direction of r . When A =  0, the wave propagates against the direction 
r [99, 109].
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In the cylindrical case, if we assume that only the range r changes, the homogeneous 
wave equation reduces to

1  d (  d\  2]
“ h-  r ^  + k ^ (r ,! )r @r \ @r J J

(r ,! )  =  0

resulting in Bessel functions

T (x ,! )  =  AJ0(kr) +  BY0(kr) 

The result can be related to the Hankel functions as

(2),T ( x , ! )  =  C H K ^ k r )  +  DH0;2)(k r)

C [J o (k r) +  j Y 0 ( k r )] +  D [J o (k r ) -  jY o (k r )],

where

H(01](kr) 

H(/\kr) s

2

^k r
j(kr—K/4)

2

n k r

—j(kr—-K/4)

e jk r  e - j k r

These results can be approximated as

T (r ,!  ) =  A ^  +  B  ̂

Assuming only direct wave (when B =  0), we can write that

e jkr
T (r ,! )  =  A -----,

r

and, by using the derivation of the surface displacement [99], calculate that

(4.12)

(4.13)

(4.14)
(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

^ (r ,! ) &
ejkr

4 n r  ’

where S ! is the strength of the source. Note that

9 !  ( r\ 0)
ejkr

4 n r

(4.20)

(4.21)

is the definition of the Green’s function. For a source at r t 
function is defined by

ejk|r-rt|

4^|r -  rt| ■9! (r  rG

(rt, zt), the general Green’s

(4.22)
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4 .1 .1  N o r m a l  m o d e  s o lu t io n

In the underwater acoustics, there are four main methods of deriving the solution for 
a wave equation: fast field program, normal modes, ray theory, and the parabolic 
equation model [99, 104]. In this thesis, normal mode solution will be analyzed, as 
one of the most widely used solutions in underwater acoustics. It is based on solving 
depth-dependent equations using the method of variable separation.

The general model of the environment is presented in Fig. 4.1. The boundary 
of the bottom depends on the nature of the ocean, such as the roughness, depending 
on the weather conditions and different environment in the ocean itself. This will 
introduce more layers of the seabed. Also, the scattering of the transmitted signal 
can cause a non-ideal environment for the analysis. The isovelocity waveguide model, 
which is presented in Fig. 4.2, characterizes a rigid boundary of the seabed. This 
yields to an ideally spread velocity of c. All channel models are based on the fact 
that the structure of the channel is a waveguide, with multiple normal-modes received, 
representing delayed versions of the transmitted signal. The goal is to estimate and 
decompose the received signal, by finding each mode separately.

Figure 4.1: The general model of a shallow water environment [106].
The one-point received pressure field y from a point source located at depth zt and 

range r =  0 is defined by the Helmoltz equation
1  @
r dr ( r  @ r )  + p ( z )  @ z (  @ Z ) +  i h s y  =

d  (  1 d y z S(r)8(z -  zt) (4.23)
dz p(z) dz c2(z) 2 wr

Using the method of variable separation, we can write the pressure as product of two 
functions one dependent on range r and another one dependent on depth z

y (r,z  ) =  Q (r)G(z) . (4.24)
By substituting this form into Eq. (4.23) and considering only its homogeneous part, 
we get

1

Q

1  r dQ 
r dr

1

+  G p(zh u
1 dG

dz p(z) dz c2 (z))
+ ■G} 0 . (4.25)
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Figure 4.2: The isovelocity model of a shallow water environment [106].

Note that this equation has two terms ( r  f ) and gG p ( z )  ~dz j ( ž )  ~dz +  cferc2(z)
The first term is a function of coordinate r only, while the second term is a function 
of coordinate z only. Their sum can be zero only if both of them are constant and do 
not depend on r and z. This constant is called the separation constant and denoted by 
k m  where m presents the mode index.

Now, by equating the second part of the last wave equation with this constant klm 
we get

or

1

^  d z

, . d l 1 dG.p(z)
dz p(z) dz 

1 dGm(z)

+  —  G
c2(z)

=  ^ ( m , ! )

p(z) dz + c2 (z) kr,m(m, !%) Gm(z) =  0 .

(4.26)

(4.27)

Note that G(0) =  0 and d G |z=D =  0, where D is the ideal rigid bottom. It is interesting 
to note that the modal equation is a Sturm-Liouville problem [1 1 0 ] whose properties 
are well-studied. The modes are orthogonal and the pressure function can be written 
as their sum

y(r,z ) =  Qm (r)Gm (z). (4.28)
m= 1

The modal equation, for this sum of the modes, can be written as

S(r)5(z -  zt )i  1 d ( r dQm(r)\
= 1  r dr dr1  dt r dQmr(r) I Gm(z) +  k2(m, ! ) Q m(r)Gm(z) 1 2 n r

(4.29)

By multiplying this equation with Gn (z) and using the property that the modes are 
normal for the considered interval of z , the following equation is obtained

1 d dQ n(r ) 2 5(r)Gn (zt )r—  +  kr (n, ! ) Qn(r ) = --------------------- . (4 .30)
r dr dr 2^ r
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Its solution is given by the Hankel function

Qn (r) =
4 P ( z t )

Gn (zt )H {0 ,2) (kr (n, ! ) r ) . (4.31)

Ignoring the time dependence for now, we can conclude that

y ( r , z ) V "  Gm(zt)Gm(z)H {0 ](kr(m, u)r).
4 p i z- t )  =

By approximating the Hankel function, the final value for pressure will be

(4.32)

y(r, z)
4 p ( z t ) V Š n r

Gm(zt)Gm(z)
m= 1

gjfcr (m,w)r

\Jkr (m, u)
(4.33)

In terms of signal processing [105, 106], considering the time dependence of the 
solution, with a source pressure field x(t), the normal-mode solution to the Helmholtz 
equation in Eq. (4.23) can be rewritten for the pressure release as

p(z)
)

. 1  \ 1  d2y(r,z,t) 8(r)8(z — zt)V I —  V y(r,z,t)\  -  . . „  . y\J ’ ; =  —x(t)G -LJ -------H. (4 .3 4 )
p(z)c2(z) dt2 2 n r

When the range and the depth parameters are known, the acoustic pressure of the 
received signal can be reduced to y(t). Following the approximation of the Hankel 
function to the received pressure in Eq. (4.33), the corresponding FT is

C
Y ( ! ) =  X  ( ! ) — y^ C m (!) 

p(z )  ^

where the constant C is
C =

m= 1

ejkr (m,!)r

\Jkr (m, ! ) r

A ___g-j'^/4
Â JŠČKr

and the frequency-dependent shape function Cm(u) is

(4.35)

(4.36)

Cm(!)  =  Gm(zt)Gm(z). (4.37)

since Gm(zt),G m(z) are dependent on ! .  In the isovelocity case, the general solution

Gm(z) =  A sin(kzz) +  B cos(kzz), (4.38)
is

where

k z - )  2 -  k 2 ,c r (4.39)

is the vertical wavenumber. The aim of this thesis is to introduce a novel approach of 
decomposition, reconstruction and analysis of the modes using techniques of compres- 
sive sensing, described in Chapter 2 .



76 Chapter 4. Decomposition in dispersive channels

4.2 Problem formulation - signal processing approach

For the practical setup, it is assumed that the transmitter is placed in water at the 
depth zt. This wave is assumed to be transmitted through an isovelocity channel as 
in [94,95,97, 101-103]. The setup is presented in Fig. 4.3. The receiver is placed at zr 
meters in water. The value r presents the distance from the transmitter to the receiver. 
Considering the received spectrum Eq. (4.35), the transfer function of the channel in 
the normal-mode case is

+ 1
H (! ) =  Gm(zt)Gm(zr )

m= 1

exp(jkr (m, ! ) r )  
\Jkr (m, ! ) r

+ 1
At(m, ! )e x p  (jkr(m, ! ) r

m= 1
(4.40)

where Gm(zt) is the transm itter m odal function  o f the m -th  m ode and Gm(zr) is the 
m odal function  o f the m -th  m ode corresponding to  the receiver [95,105, 111]. T he rate o f 
attenuation  is At(m, a) =  A(m, u)JJr. T he m ulti-com ponent structure o f  the transfer 
function  depends on  the num ber o f  m odes. N ote that the dispersive characteristic o f 
the signal depends on  the wavenum bers kr (m , a) [95]

^ ( m^ ! ) =  -  ( (m  -  0 .5 ) . (4 .41)

The speed of sound in underwater communications is c 
monochromatic signal,

s(n) =  exp(ju0n)

at the m-th mode, is

1500 m/s. The response to a

(4.42)

Sm(n) ^  At (m, !o )e x p (j!o n  -  jk r (m, u0)r). (4.43)

Figure 4.3: The isovelocity setup under water with depth D. The transmitter is located at 
position zt, the receiver is positioned at zr, with the transmitter-receiver range r [95].

The phase velocity of this signal is

^m kr (m, a)
/ ( ! ) 2 -  ((m -  0.5)D )2’

(4.44)
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and presents the horizontal velocity  o f  the corresponding phase in the representation 
o f  the m -th  m ode.

T he group velocity  represents the energy propagation  o f  the com ponent o f the 
signal. Considering the tim e dependence o f the signal,

y ( t )
1

~2n

! + 6  

!  — 6
(4.45)

and the fact that the phase must stay the same in order to  have the signal remain 
unchanged through the w hole tim e interval, the group velocity  is defined as

u m
d r

d t

d !

d k r ( m , ! )

1

dkr (m,w)
da

1

d+  ( ! ) 2 -  ((m  -  0.5)d ) 2

(4.46)

Since the received signal can be w ritten in the Fourier transform  dom ain as

X  ( ! )  =  S  ( ! ) H  ( ! ) ,  (4.47)

where H ( ! )  is the transfer function  o f the channel in the norm al-m ode form  and S ( ! )  is 
the transm itted signal Fourier transform , w ithin signal processing fram ework the tim e- 
dom ain  form  o f the received signal is then equal to  the convolution  o f the transm itted 
signal and the im pulse response o f (4 .4 0 ), that is

x ( n )  =  s ( n )  * h ( n ) ,  (4.48)

where h (n ) is the im pulse response o f (4 .4 0 ).

A m plitude o f  the first four m odes o f the im pulse response o f  a dispersive channel 
environm ent and its ideal tim e-frequency representation is calculated and shown in Fig. 
4 .4 . Our first goal is to  present efficient tools for decom position  o f  m ode functions. This 
will help to  easier detect and estim ate the signal param eters. T he detection  approaches 
related to  this kind o f  problem s will be introduced in the next sections.

Impulse response of a dispersive channel Response of a dispersive channel

Figure 4.4: The ideal response of the four considered modes.
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4.3 Polynomial Fourier transform (PFT)

T he standard Fourier transform  is spread in the frequency dom ain for the signal w ith 
polynom ia l phase function. T he idea behind the polynom ial Fourier transform  (P F T ) 
is to  introduce a polynom ial function  in the Fourier transform  whose adjustm ent would 
im prove a polynom ial phase signal concentration  in the frequency dom ain.

Let assume a polynom ial phase signal (P P S ). T he signal is o f order P , presented 
in the form  of

x ( n )  =  A e j N  p f = i . (4.49)

T he standard Fourier transform  o f x (n )

X ( k )  =  Y ^  x (n )e - j N k n , (4.50)
n

w ould contain all frequencies defined by  the instantaneous frequency variations o f  the 
polynom ial phase signal.

D e f in it io n  4 .1
T h e  P F T  i s  d e f i n e d  s t a r t i n g  f r o m  D F T  a n d  i n t r o d u c i n g  a d d i t i o n a l  p o l y n o m i a l  p h a s e  

p a r a m e t e r s  [ 112- 114]

X a M . . o p  ( k )  =  y  x ( n ) e - ‘ N  <“ 2n l + « 3n3+ - + “ pnN  ) e - j  N  kn ( 4 .5 1 )

T h e  P F T  p a r a m e t e r s  a r e  d e n o t e d  b y  a 2 , a 3 , . . . ,  a P .

T he aim  is to  estim ate the param eters a2 , a3, . . . ,  aP when the transform ation  o f  the 
signal is largely concentrated. T he signal com ponents can be extracted  and localized 
follow ing this procedure [7, 85].

W h en  the largest com ponent o f  the transform  is found, the signal will be m axim ally 
concentrated in the P F T  representation dom ain. T hat is, when the P F T  signal is best 
concentrated, we can find optim al P F T  param eters as

( a 2 , a 3 , . . . ,  a p) =  arg m ax \ X a 2t...,a p ( k )|. (4.52)

to  achieve the m axim um  sparsity. In the ideal scenario, the P F T  o f x (n )  will have the 
highest concentration  when ( a2 , . . . ,  aP) =  ( a 2 , . . . ,  a P). In reality, the goal is to  calculate 
the values to  be as close as possible to  the ideal param eters, i.e., a 2 a 2 ̂ . . .  ̂ a P a p .

4 .3 .1  L o c a l  p o ly n o m ia l  F o u r ie r  t r a n s fo r m  ( L P F T )

For tim e-varying signals, when the param eters m ay change in tim e, a localized ver- 
sion o f the P F T  is introduced in the same way as the S T F T  is defined by  using the 
Fourier transform . Spectral localization  o f the signal is achieved applying a w indow  
and calculating the P F T  o f  the w indow ed signal to  get the local P F T  (L P F T ).
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D e f in it io n  4 .2
T h e  L P F T  i s  d e f i n e d  a s  [ 7 , 1 1 5 ]

X c _ m  a p  ( k ,  n )  =  Y i  x ( n  +  » ,  ) w ( n „  ) e ~ j  N  ( k» - + « 2» w+ ■ • + « »  » N ). (4.53)

w h e r e  w ( n w ) i s  t h e  w i n d o w  f u n c t i o n  f o r  t h e  l o c a l i z e d  s i g n a l  a n a l g s i s .

In the same way as for the PFT, the maximum of LPFT is achieved when

(a2 ,a3,...,ap ) =  arg max \Xa2,...,ap (k,n) \, (4.54)
(k,a. 2 ,...,ap)

where o 2,o 3,. . . ,o P are the parameters that can now be adapted for each considered 
instant n. However, in order to simplify the notation we will not use argument n in the 
parameters in this case.

4.4 Dual form of PFT (DPFT)

The dual form of PFT (DPFT) is introduced as a more suitable representation for the 
decomposition of signals when their spectral content is localized within a short time- 
interval, while the changes of their spectral content are significant. As it is the case 
for both PFT and LPFT, the idea is to estimate the parameters where the maximal 
concentration of the DPFT is calculated.

The signal model is a polynomial-phase in the frequency domain,

X  (k) =  Ae-j  N pp=ibbkl. (4.55)

The discrete DPFT will then be

■:JSP (n) =  X  X  (k)ej N (nk+ftk2+ - + p kP \ (4 .5 6 )
k

The maximum of DPFT is achieved when

( b 1 , b 2 ,..., bp ) =  arg max (n)\. (4.57)
(n,IS2,.:,l3p)

The highest concentration is calculated when the estimated values are equal to the 
true ones, i.e., (52, ...,/3P) =  (b2, ...,bP). For a successful decomposition, the parameters 
should be estimated such that b2 ~  b2, . . . , b P ~  bP .

Note that a local version of the DPFT may be used for the analysis of more complex 
time-varying signals. The local DPFT uses a window in the frequency domain W(k) 
and it is defined as

:P p (n,k ) =  X  W (1 )X (k +  l)eJN (n1+ ^ 2+-+ plP) (4.58)
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4 . 4 . 1  S p a r s i t y  i n  D P F T

Signals with a small number of polynomial phase components, considered in the previ- 
ous section, may be considered as sparse in the DPFT. These signals can be efficiently 
decomposed and analyzed using the compressive sensing methods. Note that the CS 
approach can be applied even in the cases when not all signal samples in the Fourier 
transform are available, allowing application in denoising of acoustic signals corrupted 
with high sinusoidal interferences (clutter). These frequency samples are removed, de- 
clared as unavailable, and the signal is reconstructed using the undisturbed frequency 
values, as it will be shown in the examples.

Consider that the Fourier transform of a signal X  has a reduced number of avail- 
able samples, for example, due to denoising procedure on harmonic disturbances. Let 
consider the PPS from (4.55)

X  (k) =  Ae-j f=1 A e- j  TV (bik+b2k2+----+bp kP ) (4.59)

and its samples at k 2  { ki, k2 , . . . , k } =  NA. The initial estimate of the P-order 
DPFT of a signal whose Fourier transform is X(k),  using a reduced set of its samples, 
is

X̂ 2 , — ,&P (n) X  X  (k)ej  N (nk+42k2+~+Pp kp) (4.60)
k€NA

Assume that the parameters are correctly estimated, so that the
DPFT achieves the maximum concentration. The DPFT of a single-component signal 
is then

Xb2,...,bP(n) =  ^ 2  Aej N k(n- bl) =  A5(n -  bi). (4.61)
k

Having only one component, with the rest of the spectrum being zero-valued, we can 
conclude that it is sparse. In the multicomponent signals case

M
X (k) =  Y ,  Am e- j (blmk+b2mk2+-+ bpmkP) , (4.62)

m = 1
set of parameters is iteratively estimated separately for each component individually. 
Without loss of generality, we consider that the component amplitudes are decreasing,
i.e. A  ̂ > A 2 > ••• > Am. The first component is matched with

(^2 i , . . .  ,@p 1 ̂  =  (b2 1 , . . .  ,bPi .̂ (4.63)

After the first match, other components are considered as insignificant. The measure- 
ments matrix is found from (4.60) assuming only the available samples at k 2  NA. The 
relation for various values of n is

xb2i,...,bPi (n 1 ^ '  X (k 1) '
X b22,...,bP2 (n2 ^ ==  a k

X  (k2 )

X b2K,...,bPK (nK) _X (k NA )_

(4.64)
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where the matix A K is defined by

A  k

' e- j  N (ni fcl+̂ l)

e- j  N (nlkNA +3na)

e- j  N (nK ki+^ i) 

e  - j  N (nK kNA +3na )
(4.65)

with
(p i  =  fc2&2 i 4--------+ k P b p i  (4.66)

for i  =  1 , N a . Using the available coefficients of X ( k ) ,  k  2  NA, the nonzero values 
in time [ x b21,...,bP̂ (m ) , ^ ^ ,...,bp2 (n2 ) , . . .  , x b2K,...,bpK{ n K )] are reconstructed using the CS 
algorithm from Section 1.3.1. The first component is calculated as

x i  =  ( A f  A i ) - 1A f y . (4.67)

When the first DPFT component at n  is recovered, the remaining coefficients of X(k) 
are estimated for the first element. Then, the first component is deleted from the 
set of available measurements and the algorithm is repeated for the next coefficient. 
After its parameters are found and denoted by (P22, . . . , P P2) =  (b2 2 , . . . , b P2), both 
the first and second component are reconstructed simultaneously. The components are 
reconstructed using

(^2U . . .  Pp l) =  (b21 > ...^ bP 1  ̂ and (^221 . . . fip̂ ) =  (b221 . . .  bP̂ ) (4.68)

and the components are removed for the further estimation of the remaining compo- 
nents. The procedure is repeated for all n*. Note that, if the DPFT values are off-grid, 
we may use few samples around the position n  for a more accurate reconstruction. 
The stopping criterion of the reconstruction is defined by the desired error rate.

The results of the decomposition are single components of a non-stationary signal. 
The analysis of the signal will be done in the frequency domain, using the dual version 
of the STFT, since all examined modes are spread over a broad spectrum of frequencies. 
The dual STFT is defined by

Ns/2 -1

S T F T d ( k , n ) =  X ( p  -  k ) W ( p ) e j N > n. (4.69)
p=-Ns/ 2

where N s is the length of the window in the frequency domain.
Following the form of the S-method (1.19), the dual S-method is then

L
S M d ( k ,  n ) = ^  S T F T d ( k ,  n  +  i ) S T F T * d ( k ,  n  -  i ) .  (4.70)

i=-L

4 .4 .2  R e s u lt s

Three examples, showing the efectiveness of the proposed method, are presented. The 
algorithm used for the reconstruction is the OMP algorithm explained in Section 2.1.
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E x a m p le  1: Id e a l  p o ly n o m ia l  p h a s e  s ig n a l w ith  s in u s o id a l  d is tu r b a n c e s .

L e t  c o n s i d e r  t h e  c a s e  w h e n  t h e  p o l y n o m i a l  p h a s e  s t r u c t u r e  o f  s i g n a l  is  f u l l y  s a t i s f i e d  

( 4 . 5 5 ) . A s s u m e  t h a t  t h e  r e c e i v e d  s i g n a l  c o n s i s t s  o f  f o u r  c o m p o n e n t s  ( m o d e s ) .

X  ( k ) =  X i ( k ) +  X 2 ( k )  +  X 3( k )  +  X 4( k ) ,  ( 4 . 7 1 )

w h e r e

X ^ ( k ) =  ej  N  ( 150fc+° -06fc2) ,

X 2 ( k )  =  e j  N  (i80fc+ 0-° i5fc2+ 0-00009fc3)

X 3 ( k ) =  ej  N  (300k+0.00008k3) ,

X 4 ( k ) =  e j  N  (480k+0.035k2+0.0001k3)

T h e  f r e q u e n c y  i n d e x  r a n g e  is  k =  0 — 1 w i t h  N  =  1 0 2 4 .  T h e  t i m e  d o m a i n  o f  

t h e  s i g n a l  is  p r e s e n t e d  in  F i g .  4 .5  ( t o p  l e f t ) .  T h e  c o r r e s p o n d i n g  f r e q u e n c y  d o m a i n  o f  

t h e  s i g n a l  ( 4 . 7 1 ) , is  s h o w n  in  F i g .  4 .5  ( t o p  r i g h t ) .  A s s u m e  t h a t  N q  =  2 5 6  o f  s a m p l e s  

in  t h e  f r e q u e n c y  d o m a i n  a r e  c o r r u p t e d  b y  s t r o n g  s i n u s o i d s ,  r e s u l t i n g  in  t h e  s i g n a l

N q

x d ( n )  =  x ( n )  +  B t e j (! i n +^ l) . ( 4 . 7 2 )

1=1

T i m e  a n d  f r e q u e n c y  d o m a i n s  o f  t h e  c o r r u p t e d  s i g n a l  a r e  i l l u s t r a t e d  in  F i g .  4 .5  ( m i d d l e ) .  

T h e  f i r s t  g o a l  is  t o  d e t e c t  a n d  r e m o v e  t h e  s t r o n g  p e r i o d i c  d i s t u r b a n c e s  f r o m  t h e  s ig n a l .  

I n  o r d e r  t o  f i l t e r  t h e  s i g n a l ,  a  s i m p l e  n o t c h  f i l t e r  is  u s e d  t o  s e t  t o  z e r o  t h e  d i s t u r b e d  

c o m p o n e n t s  ( i . e . ,  h a r d  t h r e s h o l d i n g ) .  T h e  f i l t e r e d  s i g n a l ,  in  t i m e  a n d  f r e q u e n c y  d o m a i n ,  

is  i l l u s t r a t e d  in  F i g .  4 .5  ( b o t t o m ) .

T h e  d e c o m p o s i t i o n  is  p e r f o r m e d  u s i n g  t h e  D P F T  a c c o r d i n g  t o  t h e  d e f i n i t i o n  ( 4 . 6 0 ) , 

a s s u m i n g  t h e  t h i r d - o r d e r  D P F T .  T h e  p a r a m e t e r  j 2 is  v a r i e d  b e t w e e n  — 0 .2  t o  0 .2  a n d  

j 3 b e t w e e n  — 0 .3  t o  0 .3 . T h e  p a r a m e t e r  v a l u e s  w h e r e  t h e  D P F T  g i v e s  t h e  b e s t  c o n c e n -  

t r a t i o n  f o r  e a c h  m o d e  a r e  d e t e c t e d  in  a n  i t e r a t i v e  w a y .  W h e n  t h e  f i r s t  s e t  o f  p a r a m e t e r s  

,h2 , ^ 3 is  f o u n d ,  t h e  p e a k  in  t h e  D P F T  c o r r e s p o n d s  t o  a  s i n g l e  c o m p o n e n t  w i t h  t h e s e  

p a r a m e t e r s .  T h e  c o m p o n e n t  c a n  b e  d i s m i s s e d  f r o m  t h e  D P F T  a n d  t h e  e s t i m a t i o n  o f  

t h e  r e m a i n i n g  c o m p o n e n t s  is  c o n t i n u e d .  T h e  D P F T  d e c o m p o s i t i o n  o f  t h e  f o u r  m o d e s  

is  s h o w n  in  F i g .  4 . 6 , w i t h  t h e  e s t i m a t e d  ^ 2 , ^ 3 p r e s e n t e d  in  T a b l e  4 . 1 .

T a b le  4 .1 : P a ra m e te rs  b 2 ,b 3 f ° r  e a c h  m o d e  c o r r e s p o n d in g  t o  th e  D P F T  w h e re  th e  m a x im a l  
c o n c e n t r a t io n  is  a c h ie v e d  in  th e  id e a l case.

P a ra m eters/M o d e 1 2 3 4

0.1232 0.1888 0.0600 0.15360.0132 0.0168 0.0000 0.0144

F o r  t h e  T F  r e p r e s e n t a t i o n ,  w e  h a v e  u s e d  t h e  S - m e t h o d  w i t h  L  =  3 1  a n d  H a n n i n g  

w i n d o w  o f  l e n g t h  N w =  2 5 6 .  T h e  S - m e t h o d  o f  t h e  r e c e i v e d  s i g n a l  is  s h o w n  in  F i g .  4 .7
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Time-domain of non-noisy received signal DFT of original (non-noisy) received signal
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F ig u r e  4 .5 : Id e a l case  s c e n a r io : T im e  d o m a in  re c e iv e d  s ig n a l ( le f t ) ;  re c e iv e d  s ig n a l in  th e  
f re q u e n c y  d o m a in  ( r ig h t ) :  t h e  re c e iv e d  s ig n a l w i t h o u t  d is tu r b a n c e  ( to p ) ,  th e  re c ie v e d  s ig n a l 
w i t h  d is tu r b a n c e  ( m id d le ) ,  th e  s ig n a l w i t h  f i l t e r e d  d is tu rb a n c e s  ( b o t t o m ) .

0

(top  left). T he decom position  o f the four reconstructed com ponents in the S-m ethod 
representation is presented in the next four subplots o f  Fig. 4 .7 . T he sum o f the 
norm alized representations o f  the four m odes is presented in Fig. 4.7 (b o ttom  right). 
For the com parison, the original (w ithout noise) and the reconstructed signal in tim e- 
dom ain  are shown in Fig. 4 .8 .

E x a m p le  2: D e c o m p o s i t i o n  o f  a  s im u la te d  a c o u s t i c  s ig n a l.

T he acoustic signal, interpreted in Section 4.2. will be used for the decom position . 
N ote that this signal is not characterized by  the ideal polynom ia l phase structure, but 
rather it can be approxim ated by  a polynom ia l phase signal.
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F ig u r e  4 .6 : D e c o m p o s it io n  o f  th e  c o m p o n e n ts  u s in g  D P F T  in  th e  id e a l case.

0
0 0

0

A simple one-component LFM as in (4.42) is transmitted over a dispersive media. 
The dispersive channel consists of M  =  4 modes. The received signal is of form (4.48). 
It depends on (4.40) and (4.41). The amplitude attenuates by Am =  (6  — m )W (f ), 
where W ( f ) is the frequency response of the Hanning window of length Nw =  256. The 
depth of the dispersive channel is assumed to be D =  20 meters. The distance between 
the transmitter and receiver is r =  2350 meters. The frequency range is f min =  195 Hz 
and f max =  430 Hz. The received signal is presented in Fig. 4.9 (top left).

The DPFT of the third order is used for the analysis, and the parameters @2, @3 are 
varied between —0.2 to 0.2 and —0.3 to 0.3, respectively. The estimated parameters 
are presented in the Table 4.2. The DPFT mode decomposition is illustrated in Fig. 
4.9.

T a b le  4 .2 : P a ra m e te rs  c o r r e s p o n d in g  t o  th e  m a x im a l  D P F T  v a lu e s  fo r  e a c h  m o d e  in  th e  
s im u la te d  a c o u s t ic  case  w i t h o u t  d is tu rb a n c e s .

P a ra m eters/M o d e 1 2 3 4

N -0 .0380 -0 .0400 0.1780 0.1240
h  3 -0 .0180 -0 .0420 -0.1530 -0.2340

The Hanning window of size Nw =  512 is used for the dual STFT, while for the 
dual S-method L =  63 is used. The S-method of the received modes is shown in Fig. 
4.10 (top left). The sum of the four normalized component representations is presented



Ma
gni

tud
e 

Fre
que

ncy
 ind

ex 
k 

Fre
que

ncy
 ind

ex 
k 

Fre
que

ncy
 ind

ex 
k

4.4. Dual form of PFT (DPFT) 85

S M  o f  th e  rece ived  s ig n a l S M  o f  m ode  # 1
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F ig u r e  4 .7 : S - m e th o d  d e c o m p o s it io n  o f  th e  c o m p o n e n ts  in  th e  id e a l case.
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F ig u r e  4 .8 : C o m p a r is o n  o f  th e  s ig n a ls  in  th e  id e a l case: T h e  o r ig in a l  s ig n a l ( le f t ) ;  th e  re c o n -  
s t r u c te d  s ig n a l ( r ig h t ) .
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Received signal
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Optimal DPFT for mode # 2

Optimal DPFT for mode # 1
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0
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F ig u r e  4 .9 : T im e - d o m a in  m o d e  d e c o m p o s it io n :  R e c e iv e d  s ig n a l ( to p  le f t ) ;  S u m  o f  th e  re c o n -  
s t r u c te d  m o d e s  ( b o t t o m  r ig h t ) ;  O p t im a l  D P F T  e s t im a t io n  fo r  e a ch  m o d e  s e p a ra te ly  ( r e m a in -  
in g  s u b p lo ts ) .  R e d  c irc le s  - s a m p le s  re la te d  t o  th e  c o r re s p o n d in g  m o d e .

i n  F ig .  4 .1 0  ( b o t t o m  r i g h t ) .  T h e  S - m e t h o d  d e c o m p o s i t io n  o f  t h e  f o u r  m o d e s ,  o b t a in e d  
b y  t h e  D P F T  b e fo r e  t h e  C S  th e o r y ,  is  p r e s e n te d  i n  t h e  r e m a in in g  s u b p lo t s  o f  F ig .  4 .1 0 .

E x a m p le  3 : A c o u s t i c  s ig n a l w ith  s t r o n g  d is tu r b a n c e s .

A s s u m e  t h e  s ig n a l  E x a m p le  2 , a f fe c te d  b y  h ig h  s in u s o id a l  in te r fe r e n c e s  a c c o r d in g  
t o  ( 4 . 7 2 ) . A s s u m e  t h e  c a s e  s a m e  as  i n  p r e v io u s  e x a m p le ,  w i t h  A m  =  1. T h e  r e c e iv e d  
s ig n a l  w i t h o u t  in te r e fe r e n c e s  is  i l l u s t r a t e d  i n  F ig .  4 .1 1  ( t o p ) .  I t  is  a s s u m e d  t h a t  t h e  
r e c e iv e d  s ig n a l  h a s  h ig h - im p u ls e  in te r e fe r e n c e s  i n  t h e  f r e q u e n c y  d o m a in  i n  2 5 %  o f  t h e  
s p e c t r u m .  T h e  c o r r u p t e d  r e c e iv e d  s ig n a l  is  s h o w n  i n  F ig .  4 .1 1  ( m id d le ) .

A s  i n  E x a m p le  1 , t h e  a f fe c te d  c o m p o n e n ts  a re  r e m o v e d  u s in g  h a r d  t h r e s h o ld in g ,
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SM of the received signal

SM of mode # 2

SM of mode # 4

Time index n

SM of mode # 1

SM of mode # 3

Sum of all reconstructed SMs

Time index n

F ig u r e  4 .1 0 : S - m e th o d  o f  th e  d e c o m p o s e d  m o d e s  a n d  s u m  o f  th e  n o rm a l iz e d  re p re s e n ta t io n s  
o f  a l l  m o d e s  in  th e  s im u la te d  a c o u s t ic  case w i t h o u t  d is tu rb a n c e s

and the corrupted spectral samples are considered as not available. Time and frequency 
domains of the filtered received signal are presented in Fig. 4.11 (bottom).

After filtering, the estimation of the parameters is achieved using a third-order 
DPFT, illustrated in Fig. 4.12. The parameters fi2 and fi3 are varied within the range 
-0 .7  to 0.7. The estimated DPFT parameters @2,@3 can be found in Table 4.3.

The S-method of whole signal and individual modes given in Fig. 4.13. The compar- 
ison between the received signal, when no noise is present, and the final reconstructed 
signal are presented in Fig. 4.14.

It can be concluded that it is possible to decompose and recover original values
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T a b le  4 .3 : P a ra m e te rs  c o r r e s p o n d in g  t o  th e  m a x im a l  D P F T  v a lu e s  fo r  e a c h  m o d e  in  th e  
a c o u s t ic  s im u la te d  case  w i t h  d is tu rb a n c e s .

P a ra m eters/M o d e 1 2 3 4

0.2576 0.3556 0.5712 0.1288
& -0 .1764 -0 .1232 -0.3584 -0.0812

Time-domain of non-noisy received signal x !0 ‘,4 DFT of the received signal
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F ig u r e  4 .1 1 : S im u la te d  a c o u s t ic  s ig n a l w i t h  d is tu rb a n c e s :  S ig n a ls  in  th e  t im e  d o m a in  ( le f t ) ;  
S ig n a ls  in  th e  f re q u e n c y  d o m a in  ( r ig h t ) :  R e c e iv e d  s ig n a l w i t h o u t  d is tu rb a n c e s  ( t o p ) ,  re c e iv e d  
s ig n a l w i t h  d is tu rb a n c e s  ( m id d le ) ,  f i l t e r e d  re c e iv e d  s ig n a l ( b o t t o m ) .
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F ig u r e  4 .1 2 : D e c o m p o s it io n  o f  th e  c o m p o n e n ts  u s in g  D P F T  in  th e  a c o u s t ic  s im u la te d  case  
w i t h  d is tu rb a n c e s .

o f  the acoustic samples using the CS techniques for reconstruction  o f  reduced set o f 
samples in the frequency dom ain. It is seen that the obtained results are similar to  the 
results obtained in E xam ple 2, i.e., when the signal w ithout interferences is exam ined.

4.5 Model-based decomposition

In the previous section, the decom position  o f  the signal is perform ed by  varying D P F T  
param eters. In this section, we will use the idea to  vary the param eters o f  the m odal 
functions as the decom position  functions instead o f the polynom ial phase m odel o f 
the signal. Since the com ponents take the form  o f m odal functions in the considered 
acoustic signal propagation  case, we take the channel depth  D m  and the range r as the 
param eters that are being estim ated, instead o f the polynom ial coefficients 0 2,3 . The 
goal is to  vary the param eters o f the transfer function  m odel in the way we w ould vary 
the frequency param eters in the D P F T . Taking into account the F T  o f  the discrete 
received signal X ( f ) and the wavenum bers k r ( m ,  f ) as in Eq. (4 .4 1 ), instead o f the 
D P F T , given by

M
X ( k ) =  £  A me -j(bl m fc+b2 m fc2+bs m k ) 

m= 1
(4.73)
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F ig u r e  4 .1 3 : S - m e th o d  d e c o m p o s it io n  o f  th e  c o m p o n e n ts  in  th e  a c o u s t ic  s im u la te d  case w i t h  
d is tu rb a n c e s .

the received signal will be then decomposed using its normal mode form
K

X (k ) = ^ 2  A(m)eJj k r (m,k)r

m= 1

where / \ 2 rj

kr (m, k) =  -  ( (m -  0 .5)n/Dm )  ) .

(4.74)

(4.75)

The speed and the frequency range in which the underwater acoustic system oper- 
ates are defined a priori. The values 32 and /33 are varied within the expected range in
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Sum of received components Sum of the reconstructed components

F ig u r e  4 .1 4 : C o m p a r is o n  o f  th e  s ig n a ls  in  th e  a c o u s t ic  s im u la te d  case  w i t h  d is tu rb a n c e s :  T h e  
o r ig in a l  s ig n a l ( le f t )  a n d  th e  re c o n s t ru c te d  s ig n a l ( r ig h t ) .

the transform

x m,l32,l33 ( n )
____ _ j 2

(k)e j nAtc
) — ( f m —0.5)̂ ) 32 e—j 2'n:nk/N (4.76)

If the parameters 02, are correctly estimated, =  r and fi3 =  Dm then this new
representation x^2 ;̂ 3 (n) will achieve maximum concentration. Therefore, the represen- 
tation with the highest concentration produces estimate of the parameters r and Dm

(r,Dm) =  arg max \xmj32j33 (n)| (4.77)
(̂ 2,^3)

when these values are close to the true ones, i.e. Dm ~  Dm and f  ~  r. As is in the 
case of the DPFT, when the strongest component is detected, it is removed and the 
next mode parameters are detected. This procedure is continued until the remaining 
components are negligible.

4 .5 .1  R e s u lt s

To illustrate the decomposition and reconstruction, let consider the ideal case as from 
Section 4.2., with the frequency range between f min =  320 Hz and f max =  570 Hz. 
The distance between the transmitter and receiver r and the true channel depth D 
will remain the same. These two parameters are considered as unknown and further 
estimated.

The transmitted signal is considered to be a pulse with a short interval, close to a 
delta function, whose spectrum is then equal to 1, i.e. U (f) =  1. The received signal 
is of form Eq. (4.48), which will result in X ( f ) =  H ( f ).

Variables D and r are arbitrarily varied. The value for depth D is varied in the 
range between 0 to 100. The distance value r is varied in the range between 1000 to 
3000.

It has been calculated that the maximal values are found at the position D =  
20.0357 m and r =  2350 m. The decomposition of each component is shown in Fig.
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F ig u r e  4 .1 5 : D e c o m p o s e d  m o d e s  in  th e  t im e  d o m a in  u s in g  th e  m o d e l-b a s e d  te c h n iq u e

4 .1 5 . T h e  s u m  o f  t h e  r e c e iv e d  c o e f f ic ie n ts  
a r e  s h o w n  i n  F ig .  4 .1 6 .

Sum of the received components

Time index n

F ig u r e  4 .1 6 : S u m  o f  th e  c o m p o n e n ts :

a n d  t h e  s u m  o f  r e c o n s t r u c t e d  c o m p o n e n ts

Sum of the reconstructed components

re c e iv e d  ( l e f t ) ;  r e c o n s t ru c te d  ( r i g h t )
T h e  d e c o m p o s i t io n  r e s u l t s  w i l l  b e  a n a ly z e d  i n  t h e  f r e q u e n c y  d o m a in  u s in g  t h e  d u a l  

S - m e t h o d  f r o m  E q .  ( 4 . 7 0 ) . A  H a n n in g  o f  s iz e  N w =  6 3  is  u s e d  as  t h e  w in d o w .  T h e  d u a l  
S - m e t h o d  r e p r e s e n t a t io n  o f  a  s u m  o f  t h e  f o u r  r e c e iv e d  m o d e s  is  s h o w n  F ig .  4 .1 7  ( t o p  
l e f t ) .  S u m  o f  t h e  d e c o m p o s e d  c o m p o n e n ts  a n d  t h e  a m p l i t u d e s  o f  i n d i v id u a l  c o m p o n e n ts  
a r e  g iv e n  i n  F ig .  4 .1 7  ( b o t t o m  r i g h t ) ,  w i t h  t h e  d e c o m p o s i t io n  o f  e a c h  m o d e  i n d i v i d u a l l y  
i n  t h e  o t h e r  f o u r  s u b p lo t s  o f  F ig .  4 .1 7 .



4.6. Comparison 93

Sum of all reconstructed SMs
200

»sa
250

CD

■S 300
V

350
&
P 400£

450
260 280 300 320 340 360

SM of mode # 2

SM of mode # 4

200

250
<DTJ

■3 300
CJ

350
&
P 400

SM of mode # 1

£
450

260 280 300 320 340 360

SM of mode # 3

SM of the received signal

F ig u r e  4 .1 7 : S - m e th o d  d e c o m p o s it io n  o f  th e  c o m p o n e n ts  w h e n  m o d e l-b a s e d  d e c o m p o s it io n  is  
u se d .

4.6 Comparison

T he mean squared error (M SE ) in the decom position  is calculated as

e = 1 0  log
E k , n  iS M D R ( k , n )  -  m  S M D m ( k , n )  I2 

fc>n \ S M D R (k, n)\!
(4.78)

where S M DR(k ,n )  and S M Dm(k ,n )  are the sum o f  received dual S -m ethod com p o- 
nents and the sum o f S -m ethod com ponents o f m odes o f  the received signal after the 
decom position . T he errors in dB  are shown in Table 4 .4 .
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T a b le  4 .4 : E r r o r  in  th e  fo r m  o f  M S E  in  d B  fo r  th e  e x a m p le s  c o n s id e re d
Case M S E  [dB]

Ideal-case DPFT -12.6198
Simulated acoustic signal DPFT -10.1590

Simulated acoustic signal with disturbance DPFT -7.9361
Model-based technique -30.5013

T he M SE  value o f  the m odel-based technique gives the best results in term s o f 
error, which is expected  due to  its specific (i.e., not generalized) nature to  find the 
exact values o f param eters. T he m ethod  is not sensitive to  noise until the threshold for 
the detection  is reached, i.e. when the input SN R is approxim ately  —5 dB. W h en  the 
threshold is reached, the error sharply increases, since som e m odes are not detected.
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This chapter presents further work on  com pressive sensing, which can be considered 
as an extension o f results presented in the previous chapters. Here, we focus on  the 
reconstruction  and error calculation  o f general images, analyzed in the tw o-dim ensional 
discrete cosine transform  (2 D -D C T ) dom ain.

In the first part o f the chapter, a m ethod  for recovery o f sparse images is presented. 
T he algorithm  is based on  a gradient-descent procedure. T he proposed  algorithm  per- 
form s blindly to  detect and reconstruct corrupted pixels. T he assum ption is that the 
im age is sparse in the 2 D -D C T  dom ain and that the noise degrades this property. 
T he advantage o f the proposed  reconstruction  algorithm  is that the uncorrupted pixels 
rem ain unchanged in the reconstruction  process. T he proposed  m ethod  can be used 
w ithout explicitly  im posing the im age sparsity. T he algorithm  is com pared w ith some 
state-of-the-art algorithm s, proving its reconstruction  robustness.

In m ost cases, images are approxim ately  sparse or nonsparse in the 2 D -D C T  do- 
main. T he sparsification step o f images can produce the error in their final reconstruc- 
tion. In the second part o f the chapter, the exact error is derived for nonsparse images 
reconstructed under the sparsity assum ption. T he m ean squared error calculation  the- 
ory  is com pared to  the corresponding statistical values.

95
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5 .1  P r o b l e m  f o r m u l a t i o n

Let consider an 8 -bit N  x  M  image, x (n , m ), meaning that its pixel values are integers 
between 0 and 255. For compressive sensing methods, it should be assumed that the 
image is sparse in the 2D-DCT domain.

D e f in it io n  5 .1
T h e  2 D - D C T  ( a n d  i t s  i n v e r s e )  o f  a n  i m a g e  x (n , m ) i s  d e f i n e d  b y  [ 8 , 1 1 6 ]

N- 1  M- 1
X  (k , l ) =  EE x(n, m ) ' (k ,  l ,  n ,  m)

n = 0 m = 0 
N - 1  M - 1

(5.1)

x(n, m) =  EE X(k, l ) i f ( n ,  m ,  k ,  l ) ,

k= 0 1=0

w h e r e  ' ( k , l , n , m ) i s  t h e  2 D - D C T  b a s i s  f u n c t i o n  a n d  t f ( n , m ,  k , l )  i s  t h e  2 D - D C T  i n -  

v e r s e  b a s i s  f u n c t i o n ,  d e f i n e d  a s

f  n ( 2 n  +  l ) k ^  f n ( 2 m  +  1 ) l \
' ( k , l , n , m )  =  D ( n , m , k , l )  =  C k c i cos ( — N̂ —  ) cos ( — 2M —  j

T h e  c o n s t a n t s  c k a n d  c  a r e  s c a l i n g  c o n s t a n t s  d e f i n e d  a s

{

=  , 1 / V N ,  f o r  k  =  0  = f  1 / \ [ M ,  f o r  l =  0

Ck =   ̂ y / 2 / N , f o r  k  =  0  ci =  \  r f l J M l ,  f o r  l =  0  '

(5.2)

(5.3)

In matrix form, the image and its 2D-DCT can be written as x  =  UŽX  and X  =  $ x , 
respectively, where tF and $  are the rearranged matrices defined in (5.2). For the 
compressive sensing framework, we assume that the considered image is K -sparse in 
the 2D-DCT domain and that only N a  ^  N M  of its pixels are available at the positions 
(n , m ) 2  =  { ( n -̂ ^ m -]), (n 2 , m 2) , ■ ■ ■ , (n NA , m NA)}. Consequently, assuming that the
positions of the corrupted pixels are known, we can set their values to zero (as it is 
done in the initial estimate). The initial image form is then presented as

x a ( n , m ) {x (n , m ) for (n , m ) 2  NA 

0 elsewhere.
(5.4)

Note that the nonzero entries of (5.4) are the measurements within the CS framework

y  =  [ x ( n i ,m i ) ,x ( n 2 ,m 2),...,x (n N A  ,m-N a )]T ■ (5.5)

The image is sparsified according to the quantization matrix of the JPEG standard
[116]. The quality factor (QF) defines the level of sparsification of the image. For 
different QFs, which influence the level of sparsity in the block, the quantization matrix 
is defined as

Q qf =  round(Q50 ■ q) (5.6)
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where Q50 is the standard quantization matrix and the value q is the level presented as

q
J 2 -  0.02QF, for QF > 50 
\ jfF, for Q F < 50 (5.7)

The reconstruction procedure is performed using blocks of the image of size 8 x 8 . 
Then, each block is analyzed and recovered separately. After each block is recovered, 
the full image is restored by combining the blocks back. Also, different quality factors 
are assumed to compare the performance of the algorithm with various sparsity levels.

5.2 Gradient-based reconstruction algorithm

Here, we will consider an image with Nq  =  NM — Na  pixels affected by noise. The 
amplitude of noise can be within the range of the available Na  pixel values. The aim is 
to reconstruct the corrupted pixels without knowing the number of affected pixels nor 
their positions, while not changing the values of available noise-free pixels.

5 .2 .1  A lg o r i t h m

The algorithm is based on the maximization of the sparsity measure through itera- 
tions [34, 117,118]. Each particular image pixel is considered as possibly corrupted. Its 
value is varied by adding an estimation parameter, ± A . For each pixel, the gradient 
sparsity measure ||Xk̂  is estimated based on its finite difference value. The pixel pro- 
ducing the largest gradient estimate is marked as corrupted and omitted. Then the 
iterative process is repeated until the sparsity measure does not change significantly. 
All detected corrupted pixels are set as unavailable. When the set of corrupted pixels 
is defined, the reconstruction is performed. The reconstruction procedure is described 
in Algorithm 6 of Appendix [34]. The corrupted pixels are varied through the recon- 
struction procedure to produce the most sparse solution. During the reconstruction 
process, the uncorrupted pixels remain unchanged.

The algorithm can also be used when the noise is much stronger than the signal 
itself, meaning that the corrupted pixels are distinguishable from the uncorrupted pixels 
(salt-and-pepper noise), so that their positions are easily found. When we have strong 
noise in the image, we will omit the corrupted pixels from the calculations and continue 
with the reconstruction as described in Algorithm 6 of the Appendix.

5 .2 .2  C o r r u p t e d  p ix e l  s e le c t io n  p r o c e d u r e

For the selection of potentially corrupted pixels, let assume that one pixel is corrupted 
at a position (n0,m0). The image with the corrupted pixel will be defined by xa(n, m), 
where the corrupted pixel is xa(n0,m0) =  x(n0,m0) +  z , with z being the noise value.
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Following the Algorithm 6 , the corrupted pixel is varied according to ± A  to form

x+ (n, m) =  x(n, m) +  (z +  A) 8(n — n0, m — m0)
x-(n, m) =  x(n, m) +  (z — A) 8(n — n0,m — m0). (5.8)

T he gradient o f the sparsity measure is estim ated as

g ( no,mo) =  — ||X - Hi  (5 .9)

where X +  and X -  are the 2 D -D C T  o f the images (5.8) w ith  coefficients X + (k,l) and 
X~(k,l),  respectively.

Assum e that the 2 D -D C T  o f the im age when on ly  one pixel is nonzero is (z ±  A) ' ( k ,  l, n0,m0). 
T he sparsity measures can be approxim ated as a sum  o f  the original im age measure 
and the measure o f the corrupted pixel (w ith the A shifts)

N -1
X+||i = Y )  |X„+ (M )|  =  l|Xki +  |z +  A| C

k,l=0 
N -1

X -  |i =  £  | X -(k ,l)|  =  ||X||i +  |z — A| C
k,l=0

( 5 . 1 0 )

where C which depends on the corrupted pixel position (m0 ,n0) and the size of the 
image. The gradient is then

g(n0,m0) =  11X+1  ̂ — |X-|^ =  |z +  A| C — |z — A| C. (5.11)

For variations from the true image value smaller than the step |z| < A  we get

g(n0,m0) =  2Cz ~  z. (5.12)

From (5.12), it can be concluded that the gradient is proportional to the intensity of 
noise at the corrupted pixel.

5 . 2 . 3  P i x e l  s e l e c t i o n  a n d  r e c o n s t r u c t i o n

The aim is to find the positions of corrupted pixels and select which pixels are uncor- 
rupted. According to the previous subsection, this will be achieved by repeating steps 
9-15 of the gradient-based reconstruction procedure in Algorithm 6 in the Appendix. 
Note that this procedure should be repeated for all pixels, in order to estimate which 
pixels are corrupted. The full method of pixel selection and recovery is presented in 
Algorithm 7 of the Appendix. During the reconstruction, we include all previously de- 
tected positions of corrupted pixels in each iteration. The procedure is repeated until a 
required precision is achieved. The algorithm is repeated for each block, and the image 
is combined back when all blocks are reconstructed.

In the reconstruction, we have concluded that the edge effects of some blocks can 
influence reconstruction success. Small pieces of the neighboring blocks may appear
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at the edging pixels in the current block. Since the algorithm  finds the solution by 
m axim izing the sparsity, it will recognize those small pieces as disturbances in the 
considered block. It will try  to  select them  as corrupted pixels, m eaning that they 
are rem oved. To overcom e this problem , the pixel selection analysis is done using 
partially overlapping blocks. O nly the central parts o f the blocks (the ones which are 
not overlapped) are included for the final reconstruction.

5 .2 .4  R e s u lt s

T he im age “P eppers” , o f size N  x  M  =  512 x  512, is used to  dem onstrate the presented 
m ethod . T he im age is affected by  a com bination  o f  tw o noise types. These disturbing 
noise types are the sa lt-and-pepper noise (having intensity either 0 or 255) and the 
uniform  noise (noise in the range betw een 0 and 255). In color images, the noise is 
random ly positioned in each o f  the three channels (R , G , and B ) separately. Assum e 
that 50%  o f the pixels are affected by  noise, w ith  10% o f them  being the uniform  
noise. T he results o f the presented denoising algorithm  are com pared w ith a 5 x  5 
m edian filter and tw o state-of-the-art m ethods. T he first m eth od  is from  [119], based 
on  adaptive filtering. T he second considered m ethod  is the total-variation  im aging 
algorithm  from  [1 2 0 , 1 2 1 ].

T he results are shown in Fig. 5 .1 . T he original im age is presented in Fig. 5.1 
(top  left). T he im age w ith  the corrupted pixels is shown in Fig. 5.1 (top  right). The 
reconstruction  using the proposed  m eth od  and the reconstruction  o f the im age using 
the 5 x 5  m arginal m edian filter are presented in Fig. 5.1 (m iddle). In F ig . 5.1 (b o ttom ), 
the reconstruction  w ith the tw o state-of-the-art algorithm s is shown. T he m ethods for 
com paring the reconstruction  results, along w ith  the specific values o f the com parison 
param eters, will be given next.

C o m p a r is o n

T he perform ance o f  the algorithm  will be exam ined using the SSIM  index as well 
as M A E  and PSN R , w ith  respect to  the original image. T he SSIM index is introducted 
[1 2 2 ] and defined as a function  o f  lum inance, contrast and structure com parison  between 
tw o images, i.e.

S S IM (xo, x r )
( 2 hx0 hxr +  c \ ) ( 2 a XoXr +  c ^)

( C i o +  /<Xr +  Cl H + l  +  CTŽr +  CH
(5.13)

where x o and x r are the original and the reconstructed im age, respectively. T he values 
h Xo, h+v correspond to  the m ean values o f  the tw o images, a XoXr is the covariance 
betw een x o and x r , a^o, a"Xr are the variances o f  the considered images. T he constants 
ci and c2 are used for stabilization. T he SSIM value is a constant betw een the values 
0  and 1 , where 1 is obtained when the sim ilarity betw een images is com plete and 0  is 
obta ined  when no sim ilarity is present.

T he M A E  is calculated as

M A E ( x o, x r) =  mean(mean(|xo — x r |)). (5.14)
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Original image Noisy image

Reconstructed using proposed method Reconstructed using 5 x 5  median filter

Reconstructed using T V -L l Reconstructed using two-stage adaptive method

F ig u r e  5 .1 : R e c o n s t r u c t io n  o f  c o lo r  im a g e  “ P e p p e rs ”  c o r r u p te d  w i t h  5 0 %  c o m b in e d  n o ise : 
Im a g e  w i t h  c o r r u p te d  p ix e ls  ( t o p  le f t ) ;  R e c o n s t r u c t io n  u s in g  th e  p ro p o s e d  m e th o d  ( m id d le  
le f t ) ;  R e c o n s t r u c t io n  u s in g  th e  5 x  5 m e d ia n  f i l t e r  ( m id d le  r ig h t ) ;  R e c o n s t r u c t io n  u s in g  th e  
tw o  s ta te - o f - t h e - a r t  a lg o r i th m s  ( b o t t o m ) .

Table 5.1 shows the SSIM  index and M A E  for different quality factors different 
percentage o f  corrupted pixels in the grayscale im age “Lena” , presented in Fig. 5.2 (top  
left). N ote that the quality factor (w hich determ ines the sparsity level o f  the block) 
nor the num ber o f the corrupted pixels are not known by the gradient algorithm .
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T a b le  5 .1 : S S IM  in d e x  a n d  M A E  b e tw e e n  o r ig in a l  a n d  r e c o n s t ru c te d  im a g e  “ L e n a ”  f o r  v a r io u s  
q u a l i t y  f a c to r  Q F  a n d  p e rc e n ta g e  o f  c o r r u p te d  p ix e ls .

S SIM  M A E

Q F 1 2 .5 % 2 5 % 3 7 .5 % 5 0 % 1 2 .5 % 25% 3 7 .5 % 5 0 %

5 0.99 0.99 0.91 0.64 0.41 1.08 3.28 10.80
10 0.99 0.98 0.92 0.64 0.38 1.05 3.18 11.63
25 0.99 0.98 0.92 0.63 0.37 1.08 3.27 12.28
50 0.99 0.98 0.92 0.62 0.42 1.17 3.45 12.79
75 0.99 0.98 0.91 0.61 0.47 1.31 3.60 13.10
90 0.99 0.97 0.91 0.60 0.61 1.54 3.85 13.75

T a b le  5 .2 : P S N R  a n d  S S IM  fo r  th e  r e c o n s t r u c t io n  o f  th e  e ig h t  te s t  im a g e s  in  F ig .  5 .2 . T h e  
re s u lts  a re  o b ta in e d  b y  th e  p ro p o s e d , tw o -s ta g e  (2 -s ta g e )  a d a p t iv e  a lg o r i t h m  [119 ] a n d  t o t a l  
v a r ia t io n  L 1  ( T V - L 1 )  [1 2 0 , 121] m e th o d .

Test image

P S N R SSIM

Proposed 2-stage T V -L 1 Proposed 2-stage T V -L 1

Pout 45.87 39.59 39.46 0.98 0.63 0.92
Lifting body 43.92 35.90 40.15 0.99 0.73 0.94

Peppers 42.74 39.84 38.58 0.99 0.62 0.95
Lena 41.22 35.87 35.94 0.98 0.75 0.91
Boat 39.33 34.15 34.41 0.97 0.73 0.85

Butterfly 39.22 36.20 35.04 0.98 0.81 0.88
Camera 36.54 36.36 33.01 0.94 0.81 0.79
Tissue 32.44 30.92 29.35 0.91 0.86 0.73

T he peak-to-noise ratio (P S N R ) and the SSIM  index will be used for the com parison 
o f  the algorithm  w ith the state-of-the-art algorithm s based on  a set o f  eight images from  
M A T L A B  software. T he P S N R  for an 8 -b it im age is

P S N R ( x o , X r ) lO log ic
2552

m ean(m ean(|xo )-  x r l) 2)
(5.15)

T he eight test images are shown in Fig. 5 .2 , including the image peppers, analyzed 
earlier. T he com parison  am ong the reconstruction  algorithm s for eight test images 
corrupted by 50%  o f com bined noise, is given in Table 5 .2 . This table shows the 
robustness o f  the proposed  algorithm  in com parison  w ith  the other tw o m ethods for 
image reconstruction.
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Lena Lifting Body Boat Butterfiy

Camera
Pout

Peppers Tissue

F ig u r e  5 .2 : T h e  e ig h t  te s t  im a g e s  u se d  fo r  th e  c o m p a r is o n  b e tw e e n  th e  p ro p o s e d  a lg o r i t h m  
a n d  tw o  s ta te - o f - t h e - a r t  a lg o r i th m s .

5 .3  E r r o r  c a lc u la t io n  in  n o n s p a r s e  im a g e s

In the previous subsection, the im ages are considered as being sparsified according 
to  the quality factor and the corresponding quantization m atrix, since a significant 
am ount o f  the energy is concentrated w ithin a small num ber o f 2 D -D C T  com ponents. 
However, the rem aining nonzero coefficients make that the original images are only 
approxim ately  sparse or nonsparse. Since, in CS theory, sparsity should be assumed, 
the reconstruction  algorithm s will not be able to  recover small valued coefficients o f 
nonsparse signals. T he exact form ulation o f the expected  squared reconstruction  error 
in the case o f  nonsparse im ages is given in the form  o f a theorem  [123].

T h e o r e m : A s s u m e  a n  i m a g e ,  w h i c h  i s  n o n s p a r s e  i n  t h e  2 D - D C T  d o m a i n ,  w ith  

t h e  l a r g e s t  a m p l i t u d e s  i n  th is  d o m a i n  A r , r  =  1 , 2 , A s s u m e  t h a t  o n l y  N A o u t  o f

t o t a l  N M  s a m p l e s  a r e  a v a i l a b l e ,  w h e r e  1 ^  N A <  N M . A l s o  a s s u m e  t h a t  t h e  i m a g e  

i s  r e c o n s t r u c t e d  u n d e r  t h e  a s s u m p t i o n  t h a t  i t  i s  K - s p a r s e .  T h e  e n e r g y  o f  e r r o r  i n  t h e  

K  r e c o n s t r u c t e d  c o e f f i c i e n t s  ||XK —X R ||2 i s  r e l a t e d  t o  t h e  e n e r g y  o f  u n r e c o n s t r u c t e d  

c o m p o n e n t s  ||XK 0 —X||2 c o e f f i c i e n t s  a s  f o l l o w s :

l|XK —X r 112 =
K  (N M  — N a  ) 

N a ( N M  -  1)
||Xk  0 —X||

2 , (5.16)



5.3. Error calculation in nonsparse images 103

where

and

I|X k - X r
K (NM -  Na) 
Na (NM -  1)

NM

E  Ar=K+ 1

NM
|X k c - x b2 =  £

r=K+1

(5.17)

(5.18)

The proof is based on the initial estimate of the image

Xo(k ,l )=  ^  x(n,m)'N (n,k)'M (m,l) (5.19)
(n,m)2 Na

where k =  0, 1, ..., n  — 1, l =  0, 1, . . . ,  M  — 1. In a matrix form we can write

X o =  A Ty . (5.20)

The coefficients in (5.19) act as random variables, with different statistical prop- 
erties at positions of the image components, (k , l ) =  (kr , l r ), and positions not corre- 
sponding to image components, (k , l ) =  (kr , l r).

5.3.1 N oise-only coefficients

Let assume first the case when K  = 1  at (k ,̂ l +  Assuming the amplitude to be +  =  1, 
the initial estimate can be written as

X q (k , l )=  ^ 2  ' n (n,ki)'M (m,li ) ' n (n,k)'M (m,l).
(n,m)2 Na

The variable

xklh (n,m,k,l) =  ' n (n,ki)'M (m,li)'N (n,k)'M (m,l)

(5.21)

(5.22)

is random for random set of values of (n, m) where the image is available. Its initial 
estimate is

X o (k , l )=  ^  Xklh (n,m,k,l).
(n,m)2 Na

(5.23)

When (k,l) =  +  +  ), the 2D-DCT coefficients correspond to position where the 
image component is not present. In this case, the initial estimate behaves as a random 
Gaussian variable [53]. Following the orthogonality of the basis function and the fact 
that values of xkl1l (n,m,k,l) are equally distributed, the mean value of the initial 
estimate is

r x o (k,i) =  E  { X Q(k ,l) }  =  °, (k l̂) =  (ko  +  . (5.24)
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In the case of a coefficient corresponding to the image component, using the same or- 
thogonality property and the assumption of equal distribution of values xkl1l (n, m, k, l), 
it follows that

N a

hXo(k,i) =  E  {Xo(k, 1)}  =  N m ’ (k, l) =  (ki , l i )• (5.25)

For the zero-mean random variable, the variance is

° x o(k,i) =  E {  xkiii (n,m ,k , l )+
(ra,m)€NA

E E Xkiii (n, m, k, l ) x km ( i , j ,  k ,  l) J • (5.26)
(ra,m)€NA (i,j)2 NA 

(i,j)=(n,m)

As in the case when (k,l) =  (ki,li) is observed, it can be concluded that
N- 1  M- 1
Y Y j X k i i i  ( n ,  m ,  k ,  l) =  0. (5.27)
n= 0 m=0

Multiplying the left and the right side of (5.27) by xkiii ( i , j , k , l ) , and taking the 
expectation of both sides we get

N- 1 M- 1

E {EE Xkiii (n, m, k, l)xkiii (i, j, k, l) J =  0, (5.28)
n=0 m=0

with ( i , j ) 2  N . Values xkiii ( n , m , k , l )  are equally distributed. Therefore, the terms 
E {x kiii (n, m, k, l)xkiii (i, j , k, l)} for (n, m) =  (i, j )  are the same and equal to a constant 
D. The total number of these terms is N M  — 1. Furthermore, based on (5.28) we get

(N M  — 1) D +  E {xkih (n, m, k, l ) }  = 0 .  (5.29)

The initial variance definition can be written as

o(k,i) =  n a e  { x kiii( n ,m ,k , l ) }  +  ( N AA— N a ) d (5.30)

as there are exactly Na expectations with quadratic terms in the first summation 
and Na (Na — 1) terms in the second variance summation equal to D. In order to 
determine the unknown term E {^k^ (n, m, k, l ) } , several special cases should be taken 
into account.

Consider the general case when k =  k̂ , k =  N — k̂ , l =  C, l =  M  — l̂ . Then

E U k ^ ( n ,m ,k , l ) }  =  E { ' N (n ,k 0 ' M ( m ,l i ) }  x  E { ' N (n ,k ) ' M ( m , l ) }
1

N 2M  2 
(5.31)

holds. Incorporating this result into (5.29) we get that

D 1 1
(5.32)

N 2 M 2 N M  -  1'
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Next, based on (5.30), the variance can be written as

a
2
Xo(k,l)

Na(NM -  Na) 
N 2 M 2(N M  -  1)

(5.33)

This result also holds when (k\,li) =  (0, 0). The special cases of the 2D-DCT indices 
are considered in [123]. Note that, when A  =  1, the result is multiplied by Â . As 
N M  ^  1, an accurate approximation, when all special cases are included, for the 
average variance of noise-only coefficients follows

a
2
Xo

A2 Na (NM -  Na)
A 1 n 2M 2(n m  -  1 ) (5.34)

In the realistic case of several components in the 2D-DCT domain, the observed 
random variable becomes

K
Xo (k,l) =  A r'N(n,kr)'M(m,lr) x ' N(n,k)'M(m,l).  (5.35)

(ra,m)€NA r= 1

In this case, the coefficients at noise-only positions (k,l) =  (kr,lr) are random 
variables formed as the summation of independent zero-mean Gaussian variables over 
r. The unavailable pixels in each component add to the noise. The noise from each 
component is proportional to the squared amplitude of that component, following (5.34) 
with Ar, r =  1 ,...,K. Therefore, the mean value of the K  2D-DCT coefficients is

hXo(fc,l)
Na

n m

K
Ar8(k -  kr,l -  lr).

r= 1

(5.36)

The average variance of noise-only coefficients in this case easily follows as

2 =  C  A 2 Na (N M  -  Na )
aXu M  r n 2 m 2(n m  -  1 ) (5.37)

5 .3 .2  N o n s p a r s e  im a g e s  r e c o n s t r u c t io n  e r r o r

The image is reconstructed under the K-sparsity constraint. The conditions for a unique 
reconstruction are assumed to be met. According to (5.37), one nonreconstructed 
element behaves as a noise with variance

2 =  .2  Na (N M  -  Na ) 
aXo Ar N 2M 2(NM -  1)

(5.38)

which leads that the variance of all components which are not reconstructed will be

a2
T

N M

A
r=K+1

Na (N M  -  Na)
n 2 m 2(n m  -  1 ) (5.39)
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The total noise energy from the nonreconstructed coefficients in the K  reconstructed 
components is

||Xk - x r \\2 =  K
2 ^ N 2M 2 _2 K (NM -  Na ) N M  a 2

n a  a T Na (N M  -  1) £  ^ 2 (5.40)
r=K+1

Note that the noise of the nonreconstructed coefficients can be related to their energy,

NM
I|Xk - x ||2 =  £  A2. (5.41)

r=K+1

From the previous analysis it follows that

|X k - X r |2 =  K  + ( -  NA> |X k - X |2 . (5.42)Na (N M  -  1) 

This completes the proof of the theorem.

5 .3 .3  N u m e r ic a l  r e s u lts

An image set with standard MATLAB images is used for the numerical examination of 
the theorem. The set is presented in Fig. 5.3. Each image is split into B x B = 1 6  x 16 
blocks. The reconstruction is performed under the sparsity assumption K  = 1 6  per 
block, with 60% of pixels available. The reconstruction is performed using the OMP 
algorithm. The errors are calculated for each block separately and then the results are 
averaged over all blocks in the image. The statistical PSNR, for an 8 -bit image, is

PSNRstatistics =  10 log
2552

I|Xk  -  x r  ||2

and the theoretical PSNR, according to the thereom, is

2552
PSNRtheory =  10 log '

)•

K  N B i A )  IIX k  -  X II2)

(5.43)

(5.44)

The results are presented in Table 5.3, confirming a high agreement between the results.

T a b le  5 .3 : S ta t is t ic a l  a n d  th e o r e t ic a l  c a lc u la t io n s  o f  th e  P S N R  fo r  8 te s t  im a g e s  in  F ig .  5 .3 .
Test image Lifting b od y B oat Pout A u tu m n  Pirate Pears Peppers Football

Statistics 82.97 81.97 80.35 90.81 70.97 78.77 79.16 68.69
Theory 83.11 82.13 80.42 90.92 71.10 78.86 79.23 68.63
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Pout

F ig u r e  5 .3 : T h e  e ig h t  te s t  im a g e s  u s e d  fo r  th e  e r r o r  a n a ly s is .





Conclusions

T he com pressive sensing theory  can be used to  develop a successful sam pling technique 
in different fields and various signals. T he idea o f using a small num ber o f  m easurem ents 
for the signal acquisition im proves the efficiency o f storage, m em ory requirements, 
and transm ission o f signals. A ccurate recovery o f signals sam pled in such a way is 
the prim ary goal o f com pressive sensing and sparse signal processing. Since m any 
signals in nature can be represented as sparse in som e transform ation  dom ain, the 
technique showed huge potential in real-world problem s. However, the idea is not 
yet fully developed and applied in the underwater acoustics field. T he non-stationary 
nature o f such signals makes it suitable for the analysis using tim e-frequency tools 
under the signal processing approach. In the com pressive sensing sense, non-stationary 
signals are on ly  approxim ately  sparse or nonsparse in the corresponding transform ation  
dom ain.

In this thesis, three m ajor points are considered, w ith  the aim  to  find a success- 
ful solution for applying com pressive sensing m ethods to  the underwater acoustics. It 
is im portant to  notice the nonsparse characteristic o f the signals received in disper- 
sive channels. T he nonsparsity, in general, will produce errors in the reconstruction  o f 
signals considered as sparse in their nature. T he exact error generated in the recon- 
struction  o f  tim e-varying signals was derived in this thesis. T he uniform  and random  
sam pling were considered, together w ith  a generalization o f the error depending on  the 
sam pling m ethod. For a m ore realistic case, the effect o f quantization, as a crucial step 
for the hardware im plem entation, is analyzed. In the end, the noise folding effect is 
considered as well.

In addition  to  the dispersive underwater channel analysis, w ideband sonar images 
are considered as an im portant top ic  in the underwater acoustics. In the literature, on ly 
basic form s o f  signals were used for the transm ission. T he usage o f  various sequences 
showed interesting results in the reconstruction  o f sonar signals. T he im plem entation 
o f  com pressive sensing techniques on  those signals was considered. W e showed that 
the reconstruction  o f sonar signals could be significantly im proved in detecting and lo- 
calizing sparse targets. Dispersive channels introduce m ulti-com ponent non-stationary 
signals as an additional challenge to  this field. C om bining the previously  studied re- 
construction , together w ith  the principles o f the polynom ial Fourier transform  and 
m ode decom position , the tim e-varying com ponents o f  the sonar signals are successfully 
detected , decom posed , and analyzed.

T he dispersive m edia was discussed through tw o different approaches: the decom p o- 
sition o f signals received at a m isaligned sensor, and a signal received from  a dispersive 
isovelocity  shallow water environm ent. Three different m ethods were considered: high- 
resolution local polynom ial case, the dual extension o f the polynom ial Fourier dom ain, 
and a m odel-function  based technique. It is concluded that the m odel-based m ethod 
gives the best results in term s o f error, which is expected  due to  its specific nature to

109
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f i n d  t h e  a p p r o p r ia t e l y  a d ju s t e d  f o r m s  a n d  t h e  v a lu e s  o f  c o r r e s p o n d in g  p a r a m e te r s .  T h e  
m e t h o d  is  n o t  s e n s i t iv e  t o  t h e  n o is e  u n t i l  t h e  t h r e s h o ld  f o r  t h e  d e t e c t io n s  is  r e a c h e d .  
A ls o ,  a  m o r e  g e n e r a l  a p p r o a c h ,  b a s e d  o n  t h e  p o l y n o m ia l  F o u r ie r  t r a n s f o r m ,  is  i n t r o -  
d u c e d .  A l t h o u g h  t h e  m o d e  fo r m s  d o  n o t  f u l l y  c o in c id e  w i t h  t h e  p o l y n o m ia l  fo r m s ,  i t  w a s  
s e e n  t h a t  a  r e a s o n a b le  e r r o r  r a t e  is  a c h ie v e d ,  w i t h  a  q u i t e  g e n e r a l  m o d e l .  T h e  m e t h o d  
is  f u r t h e r  im p r o v e d  b y  u s in g  a  s p a rs e  d e c o m p o s i t io n  a n d  r e c o n s t r u c t i o n  o f  c o m p o n e n ts  
u s in g  t h e  i t e r a t i v e  a l g o r i t h m .

T h e  p r e s e n te d  t h e o r y  a n d  m e t h o d s  c a n  b e  e x te n d e d  i n  v a r io u s  d i r e c t io n s .  I n  t h e  
d e c o m p o s i t io n  o f  t h e  d is p e r s iv e  m e d ia ,  t h e  h ig h - r e s o lu t i o n  t e c h n iq u e s  s h o w e d  p r o m is in g  
r e s u l t s  c o m b in e d  w i t h  t h e  p o l y n o m ia l  F o u r ie r  t r a n s f o r m .  A n o t h e r  i n t e r e s t i n g  c o u rs e  is  
i n  t h e  e r r o r  c a lc u la t io n ,  w h ic h  w a s  d e v e lo p e d  f o r  t h e  t im e - v a r y i n g  p a r t  o f  t h e  s ig n a ls  
r e c e iv e d  i n  t h e  d is p e r s iv e  m e d ia .  T h e  d e r i v a t i o n  c a n  b e  f u r t h e r  e x te n d e d  i n  t h e  d i r e c t i o n  
o f  t h e  d u a l  p o l y n o m ia l  F o u r ie r  t r a n s f o r m a t io n  d o m a in ,  as  t h e  s p a r s i t y  d o m a in .  T h e  la s t  
a p p r o a c h  is  b a s e d  o n  t h e  c o m b in a t i o n  o f  t h e  a p p r o p r ia t e  s e q u e n c e  f o r m  s e le c t io n  i n  t h e  
t r a n s m is s io n  p a r t  o f  t h e  s e tu p .  T h e  c o m b in a t i o n  o f  t h e  s u i t a b le  s e q u e n c e s , c o m b in e d  
w i t h  t h e  d u a l  e x t e n s io n  a s  t h e  s p a r s i t y  d o m a in  a n d  t h e  a p p r o p r ia t e  e r r o r  c a lc u la t io n ,  
c o u ld  r e s u l t  i n  a  r o b u s t  s o lu t i o n  f o r  f u r t h e r  a n a ly s is  o f  s ig n a ls  t r a n s m i t t e d  u n d e r w a t e r .

F i n a l l y ,  s o m e  o f  t h e  r e s u l t s  a n d  d e v e lo p e d  m e t h o d s  a re  a p p l ie d  t o  t h e  g e n e r a l  im a g e  
d e n o is in g  p r o b le m ,  s h o w in g  t h a t  t h e  p r e s e n te d  r e s u l t s  a n d  m e t h o d s  a re  n o t  s t r i c t l y  
l i m i t e d  t o  t h e  u n d e r w a t e r  a c o u s t ic  s ig n a l  a n a ly s is .
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APPENDIX A

Reconstruction algorithms

This Appendix presents some of the most commonly used algorithms in the compres- 
sive sensing theory. This, however, does not exclude the vast number of techniques 
developed during the years. It simply illustrates some procedures which were success- 
fully implemented in many areas. Additionally, Algorithm 7 presents the algorithm 
proposed in Chapter 5 of this thesis.

O r t h o g o n a l  m a t c h i n g  p u r s u i t  a l g o r i t h m

Algorithm  1 One-step OMP reconstruction 
Input:

• Measurement vector y

• Measurement matrix A

• Number of selected coefficients in each iteration r, by default r  =  1

• Required precision e

125
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Algorithm  2 Iterative OM P reconstruction 

Input: Vector y, matrix A , assumed sparsity K

1: K  4— 0, e 4— y  

2: for 2 = 1  do K
3: k  e - position of the highest value in A He

4: K < -K U fc
5: A k  4— columns of matrix A  selected by set K
6: X K  < - p in v(A ^ )y
7: y K  4 -  A k X k

8: e <- y  -  y K

9: end for

O utput: Reconstructed =  X K  and positions K.

I t e r a t i v e  h a r d  t h r e s h o l d i n g  a l g o r i t h m

Algorithm  3 Iterative Hard Thresholding (IHT) Reconstruction Algorithm 
Input: Vector y, Matrix A , Assumed sparsity K ,

Number of iterations I t , and parameter r .

1: X o  4—  0 
2: for i =  1 do I t

3: Y < - X 0 +  r A ^ ( y -  A X 0)

4: K  4—  sort(|Y|), indices of K  largest |Y|
5: Xo +- 0, Xo •<— Y  for k  e K , Hard Thresholding
6 : end for

O utput: Reconstructed X #  =  X q, the set of positions K.
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B a y e s i a n - b a s e d  r e c o n s t r u c t i o n  a l g r o t i h m

Algorithm  5 Bayesian-based reconstruction
Input: Vector y, Matrix A

1

2
3
4
5
6
7
8 
9

10:

11 :

12:

13
14
15
16 
17

« i < -  1  

a 2 <— 1 

T h =  102
P =  [1 ̂  2 , ,  N ] t  

repeat

> For i =  1 , 2 , N  

> Initial estimate 
> Threshold

D
S  • 
V
7 i  ■ 

di •

diagonal matrix with d,r values 
(A TA/cr2 +  D ) - 1 

■ S A Ty/(72
1 diTin 
7i/Vi
l | y - a v ||2

> For each i

> For each i

M - Z i T i  
M t— { i  : \di\ >  T h}

Remove columns from matrix A  selected by M 
Remove elements from array d, selected by M 
Remove elements from vector p selected by M 

until stopping criterion is satisfied
Reconstructed vector X  nonzero coefRcients are in vector V  with corresponding positions 
in vector p, X Pi =  V,

Output:
Reconstructed signal vector =  V , the set of positions K =  p.
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P r o p o s e d  m e t h o d  i n  C h a p t e r  5

Algorithm  7 Proposed method in Chapter 5 

Input:
• Image x  of size N x M with possibly corrupted pixels

• Number of pixels to be selected in each iteration r  

Output:
• Reconstructed image x

• Set of the uncorrupted pixels Na

1: A 4-  maxm]„ \x(m, n)\

2: N^ 4-  {(m , n) : m = 1 , 2 , . . . ,  M, n = 1 , 2 , . . . ,  N}
3: N x < -  0 
4: repeat
5: for all (n, m) £ N^ do
6: x + 4-  x
7: x+{m, n) •<— x+{m, n) +  A
8: X +  4 -  D C T 2 {x + }
9: X -  4-  X

10 : x~{m, n) 4-  x~{m, n) — A
ll : X “  < - D C T 2 {x “ }
12: g{m,n) 4-  ||X+||i — ||X_ ||i

13: end for
14: Select r  pixels (m, n) £ Na with highest \g{m, n)\
15: Add selected pixels to set N.J;
16: Remove selected pixels from set N,4
17: x 4—  GradRec(x , N ^) > Algorithm 6
18: until the sparsity is not significantly changed
19: Optionally, perform sparsification of the reconstructed image
20: return x, N^
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se n a v e d e  im e  iz v o r n o g  a u t o r a  ( o n a k o  k a k o  je  i z v o r n i  a u t o r  i l i  d a v a la c  l ic e n c e  
o d r e d io ) .  D je lo  se m o ž e  k o r i s t i t i  i  u  k o m e r c i ja ln e  s v r h e .

2 . A u t o r s t v o  — n e k o m e r c i j a l n o . D o z v o l j a v a ju  se p r e r a d e ,  u m n o ž a v a n je ,  d i s t r i b u -  
c i ja  i  j a v n o  s a o p š ta v a n je  d je la ,  p o d  u s lo v o m  d a  se n a v e d e  im e  iz v o r n o g  a u t o r a  
( o n a k o  k a k o  je  i z v o r n i  a u t o r  i l i  d a v a la c  l ic e n c e  o d r e d io ) .  K o m e r c i j a ln a  u p o t r e b a  
d je la  n i j e  d o z v o l je n a .

3 . A u t o r s t v o  — n e k o m e r c i j a l n o  — b e z  p r e r a d e . L ic e n c a  k o jo m  se u  n a jv e ć o j  
m je r i  o g r a n ič a v a ju  p r a v a  k o r iš ć e n ja  d je la .  D o z v o l ja v a  se u m n o ž a v a n je ,  d i s t r i b u -  
c i ja  i  j a v n o  s a o p š ta v a n je  d je la ,  p o d  u s lo v o m  d a  se n a v e d e  im e  iz v o r n o g  a u t o r a  
( o n a k o  k a k o  je  i z v o r n i  a u t o r  i l i  d a v a la c  l ic e n c e  o d r e d io ) .  D je lo  se n e  m o ž e  m i je n -  
j a t i ,  p r e o b l i k o v a t i  i l i  k o r i s t i t i  u  d r u g o m  d je lu .  K o m e r c i j a ln a  u p o t r e b a  d je la  n i j e  
d o z v o l je n a .

4 . A u t o r s t v o  — n e k o m e r c i j a l n o  — d i j e l i t i  p o d  i s t i m  u s l o v i m a . D o z v o l ja v a  se 
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o d r e d io ) .  U k o l i k o  se d je lo  m i je n ja ,  p r e o b l i k u je  i l i  k o r i s t i  u  d r u g o m  d je lu ,  p r e r a d a  
se m o r a  d i s t r i b u i r a t i  p o d  i s t o m  i l i  s l ič n o m  l ic e n c o m .  D je lo  i  p r e r a d e  se n e  m o g u  
k o r i s t i t i  u  k o m e r c i ja ln e  s v r h e .

5 . A u t o r s t v o  — b e z  p r e r a d e . D o z v o l ja v a  se u m n o ž a v a n je ,  d i s t r i b u c i j a  i  j a v n o  
s a o p š ta v a n je  d je la ,  p o d  u s lo v o m  d a  se n a v e d e  im e  iz v o r n o g  a u t o r a  ( o n a k o  k a k o  je  
i z v o r n i  a u t o r  i l i  d a v a la c  l ic e n c e  o d r e d io ) .  D je lo  se n e  m o ž e  m i j e n ja t i ,  p r e o b l i k o v a t i  
i l i  k o r i s t i t i  u  d r u g o m  d je lu .  L ic e n c a  d o z v o l ja v a  k o m e r c i ja ln u  u p o t r e b u  d je la .

6 . A u t o r s t v o  — d i j e l i t i  p o d  i s t i m  u s l o v i m a . D o z v o l ja v a  se u m n o ž a v a n je ,  d is -  
t r i b u c i j a  i  j a v n o  s a o p š ta v a n je  d je la ,  p o d  u s lo v o m  d a  se n a v e d e  im e  i z v o r n o g  a u t o r a  
( o n a k o  k a k o  je  i z v o r n i  a u t o r  i l i  d a v a la c  l ic e n c e  o d r e d io ) .  U k o l i k o  se d je lo  m i je n ja ,  
p r e o b l i k u je  i l i  k o r i s t i  u  d r u g o m  d je lu ,  p r e r a d e  se m o r a ju  d i s t r i b u i r a t i  p o d  i s t o m  i l i  
s l ič n o m  l ic e n c o m .  O v a  l ic e n c a  d o z v o l ja v a  k o m e r c i ja ln u  u p o t r e b u  d je la  i  p r e r a d a .  
S l ič n a  je  s o f t v e r s k im  l ic e n c a m a ,  o d n o s n o  l ic e n c a m a  o t v o r e n o g  k o d a .
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