UNIVERZITET CRNE GORE ELEKTROTEHNIČKI FAKULTET

mr Milena Zogović

OPTIČKI PRIJEMNIK SA PROMJENLJIVOM TRANSIMPEDANSOM U INTEGRISANOJ BICMOS TEHNOLOGIJI NA BAZI TRANSLINEARNE PETLJE SA BIPOLARNIM TRANZISTORIMA

- DOKTORSKA DISERTACIJA -

Podgorica, mart 2012.

PODACI I INFORMACIJE O DOKTORANTU

Ime i prezime	Milena Zogović
Datum i mjesto rođenja	30.03.1984, Podgorica
Naziv završenog postdiplomskog studijskog programa i godina završetka	Elektronika, 2008.

INFORMACIJE O DOKTORSKOJ DISERTACIJI

Naziv doktorskih studija	Doktorske studije elektrotehnike
Naslov tezc	Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petlje sa bipolarnim tranzistorima
Fakultet na kojem je disertacija odbranjena	Elektrotehnički fakultet, Podgorica

UDK, OCJENA I ODBRANA DOKTORSKE DISERTACIJE

Datum prijave doktorske teze	05.06.2009.
Datum sjednice Senata Univerziteta na kojoj je prihvaćena teza	22.10.2009.
Komisija za ocjenu podobnosti teze i kandidata	Prof. dr Ivo Kostić Prof. dr Nikša Tadić Prof. dr Srđan Stanković
Mentor	Prof. dr Nikša Tadić 🐻 🧭
Komisija za ocjenu doktorske disertacije	Prof. dr Ivo Kostić Prof. dr Nikša Tadić Prof. dr Desa Gobović
Komisija za odbranu doktorske disertacije	Prof. dr Ivo Kostić Prof. dr Nikša Tadić Prof. dr Desa Gobović Prof. dr Zoran Mijanović 26 Prof. dr Rada Dragović-Ivanović
Lektor	Lenka Džankić, profesor književnosti
Datum odbrane	12.03.2012.
Datum promocije	

Najiskrenije se zahvaljujem svom mentoru Prof. dr Nikši Tadiću.

Zahvalnost takođe dugujem Univ. Prof. Mag. rer. nat. Dr. techn. Horst-u Zimmermann-u, šefu Institute of Electrodynamics, Microwave and Circuit Engineering, Faculty of Electrical Engineering and Information Technology, Vienna University of Technology, koji mi je omogućio boravak na ovom Institutu, korišćenje resursa (softverski alati za projektovanje integrisanih kola i laboratorijska oprema za eksperimentalnu valorizaciju integrisanih kola) kojima ovaj Institut raspolaže, kao i pokrivanje troškova fabrikacije ASIC čipova. u cilju realizacije doktorske disertacije.

Prema svojoj porodici osjećam posebnu zahvalnost.

REZIME

doktorskoj disertaciji predstavljen je optički prijemnik sa promjenljivom U transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima u integrisanoj BiCMOS tehnologiji koji je namijenjen za univerzalne optičke memorije. Ovo opto-elektronsko integrisano kolo pripada grupi optičkih prijemnika sa strujnim pojačavačima sa promjenljivim pojačanjem i sadrži integrisanu PIN fotodiodu. U okviru doktorske disertacije data je podjela optičkih prijemnika, kao i pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom. Prikazan je dizajn optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima i dati odgovarajući matematički modeli. Opisan je mehanizam kontrole pojačanja optičkog prijemnika. Izvršena je detaljna analiza frekventnih karakteristika optičkog prijemnika, analiza stabilnosti, kao i analiza šuma. ASIC čipovi koji sadrže optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima su fabrikovani u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Dat je pregled eksperimentalno dobijenih rezultata i izvršena analiza svih bitnih statičkih (greška linearnosti izlaznog napona u funkciji od struje fotodiode, transimpedansa, foto-osjetljivost, naponski ofset, maksimalna disipacija snage) i dinamičkih (frekventni odziv, vremenski odziv, šum) karakteristika optičkog prijemnika, kao i poređenje sa odgovarajućim karakteristikama postojećih rješenja. Kroz sprovedenu uporednu analizu pokazano je da predloženo rješenje predstavlja najbolji dizajn do sada ostvaren u oblasti optičkih prijemnika sa promjenljivom transimpedansom koji su namijenjeni univerzalnim optičkim memorijama. Ovaj optički prijemnik posjeduje najveću transimpedansu, najveću foto-osjetljivost, najveći dinamički opseg transimpedansi (fotoosjetljivosti), kao i najveći proizvod transimpedansa-frekventni opseg koji su do sada postignuti u oblasti optičkih prijemnika sa promjenljivom transimpedansom namijenjenih za univerzalne optičke memorije. Na osnovu poređenja karakteristika čipova u dvije pomenute tehnologije pokazano je da bolja tehnologija ne znači uvijek i bolje performanse. Na kraju su dati odgovarajući zaključci i istaknuti najznačajniji naučni doprinosi doktorske disertacije.

ABSTRACT

An optical receiver with variable transimpedance based on BJT translinear loop in integrated BiCMOS technology, intended for universal optical storage systems, is presented in this doctoral thesis. This optoelectronic integrated circuit belongs to the group of optical receivers with variable-gain current amplifiers. PIN photodiode is integrated on the same chip. In this doctoral thesis, classification of optical receivers is also given, as well as a review of the optical receivers with variable transimpedance. The design of optical receiver with variable transimpedance based on BJT translinear loop and corresponding mathematical models are shown. The gain control of the optical receiver is also described. Detailed analysis of frequency characteristics and stability, as well as noise analysis, is performed. ASIC chips with optical receiver with variable transimpedance based on BJT translinear loop are fabricated in 0.6 um BiCMOS silicon technology and 0.35 µm BiCMOS silicon-germanium technology. An overview of experimentally achieved results is given. The analysis of all important static (linearity error of output voltage versus photodiode current, transimpedance, photo-sensitivity, offset voltage, maximal power consumption) and dynamic (frequency response, transient response, noise) characteristics of the optical receiver, as well as comparison with corresponding characteristics of existing optical receivers is performed. Through given comparative analysis, it is proven that the proposed optical receiver represents the best design achieved till now among optical receivers with variable transimpedance intended for universal optical storage systems. This optical receiver has the largest transimpedance, the largest photo-sensitivity, the largest transimpedance (photo-sensitivity) dynamic range, and the largest transimpedance-bandwidth product in the area of optical receivers with variable transimpedance intended for universal optical storage systems. Comparing the same characteristics of chips made in two aforementioned technologies, it is concluded that better technology doesn't always mean better performances. In the end, the appropriate conclusions are given, and the most important scientific contributions of this doctoral thesis are highlighted.

SADRŽAJ

1	Uvod	1
2	Pregled opštih karakteristika optičkih prijemnika i njihova podjela	6
	2.1 Optički prijemnici sa fiksnom transimpedansom	7
	2.2 Optički prijemnici sa promjenljivom transimpedansom	. 10
	 2.2.1 Optički prijemnici sa otpornim mrežama 2.2.2 Optički prijemnici sa strujnim pojačavačima sa promjenljivim pojačanjem 2.2.3 Optički prijemnici sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja 	. 14 . 15 16
3	Pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom	18
	3.1 Optički prijemnici sa otpornim mrežama	. 18
	3.2 Optički prijemnici sa strujnim pojačavačima sa promjenljivim pojačanjem	. 39
	3.3 Sistemi sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja	.51
4	Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petlje sa bipolarnim tranzistorima	. 71
	4.1 Osnovna struktura optičkog prijemnika sa promjenljivom transimpedansom na bazi strujnog pojačavača sa varijabilnim pojačanjem	71
	4.2 PIN fotodioda	72
	4.3 Kontrola transimpedanse optičkog prijemnika pomoću kontrolnih struja primjenom translinearne petlje sa bipolarnim tranzistorima	78
	4.4 Naponski ofset	86
	4.5 Kompletna šema	87
	4.6 Frekventni odziv i stabilnost	. 89
	4.7 Šum	97
5	Uporedna analiza frekventnog odziva i stabilnosti optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima realizovanog u 0.6 μm BiCMOS silicijumskoj tehnologiji i 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji	1 1 1 . 104
	5.1 Uporedna analiza frekventnog odziva i stabilnosti optičkog prijemnika realizovanog u različitim tehnologijama	; . 105
6	Eksperimentalni rezultati, rezultati simulacija i komparativna analiza	. 124
	6.1 Statičke karakteristike	. 131
	6.1.1 Izlazni napon u funkciji struje fotodiode	. 131
	6.1.2 Transimpedansa	. 133
	6.1.4 Naponski ofset	. 134
	6.1.5 Maksimalna disipacija snage	135

6.2 Dinamičke karakteristike	
6.2.1 Frekventni odziv	
6.2.3 Snaga šuma	
7 Zaključak	
Dodatak A Električne šeme i <i>layout-</i> i čipova	
Dodatak B Dimenzije MOSFET-ova i BJT-ova	
Dodatak C Štampana ploča	
Dodatak D Fotografije štampane ploče i mikrofotografije čipova	
Dodatak E Fotografije iz laboratorije	
Dodatak F MATLAB kodovi	251
Literatura	

POPIS SLIKA

Slika 2.1	Tipični optički prijemnik sa fiksnom transimpedansom	7
Slika 2.2	Optički prijemnik sa fiksnom transimpedansom sa kompenzacionim kondenzatorom	.10
Slika 2.3	Zavisnost izlaznog napona V_{out} optičkog prijemnika sa promjenljivom transimpedansom od struje fotodiode I_{pd} sa odgovarajućom optičkom snagom upadne laserske svjetlosti P_{opt}	11
Slika 2.4	Postupak čitanja podataka sa optičkog diska	12
Slika 2.5	Tipični optički prijemnik sa diskretnim vrijednostima transimpedansi na bazi prekidačkih tehnika .	15
Slika 2.6	Optički prijemnik sa strujnim pojačavačem sa promjenljivim pojačanjem	16
Slika 2.7	Optički prijemnik sa naponom kontrolisanim otpornikom koji koristi kombinaciju strujnog i naponskog procesiranja	17
Slika 3.1	Transimpedansni pojačavač [4]	19
Slika 3.2	Ulazni stepen transimpedansnog pojačavača [4] za slučaj malih ulaznih struja (kada transimpedansa ima najveće vrijednosti)	20
Slika 3.3	Strujom kontrolisan otpornik R _i	21
Slika 3.4	Kolo za kontrolu pojačanja transimpedansnog pojačavača [4]	24
Slika 3.5	Kolo za automatsku kontrolu pojačanja transimpedansnog pojačavača [5]	. 25
Slika 3.6	Transimpedansni pojačavač sa kolom za odbijanje ambijentalne svjetlosti [6]	. 26
Slika 3.7	Osnovna struktura transimpedansnog pojačavača sa promjenljivom transimpedansom [6]	28
Slika 3.8	Naponski pojačavač bez povratne sprege u sklopu transimpedansnog pojačavača [6]	28
Slika 3.9	Model za male signale naponskog pojačavača sa slike 3.8	28
Slika 3.10	Model za male signale transimpedansnog pojačavača [6]	30
Slika 3.11	Diferencijalni transimpedansni pojačavač [6]	32
Slika 3.12	Pojednostavljena električna šema diferencijalnog transimpedansnog pojačavača [6]	3 2
Slika 3.13	Model za male signale kola prikazanog na slici 3.12	32
Slika 3.14	Naponom kontrolisan otpornik	33
Slika 3.15	Optički prijemnik na bazi prekidačkih tehnika [7]	34
Slika 3.16	Električna šema transimpedansnog pojačavača sa fotodiodom [7]	36
Slika 3.17	Šematski prikaz regulacije ofseta pomoću dummy strukture [7]	38
Slika 3.18	Model za male signale transimpedansnog pojačavača [7]	38
Slika 3.19	Transimpedansni pojačavač sa promjenljivim pojačanjem [12]	40
Slika 3.20	Strujni pojačavač sa promjenljivim pojačanjem [12]	40
Slika 3.21	Konvertor struje u napon u sklopu transimpedansnog pojačavača [12]	40
Slika 3.22	Model za male signale strujnog pojačavača sa promjenljivim pojačanjem u sklopu transimpedansnog pojačavača [12]	41
Slika 3.23	Model za male signale konvertora struje u napon u sklopu transimpedansnog pojačavača [12]	42
Slika 3.24	Osnovna struktura optičkog prijemnika [14]	43
Slika 3.25	Kontrola pojačanja optičkog prijemnika [14]	44
Slika 3.26	Blok šema optičkog prijemnika [15]	45
Slika 3.27	Pojednostavljena električna šema strujnog pojačavača u okviru optičkog prijemnika [15]	46
Slika 3.28	Model za male signale strujnog pojačavača [15]	46

Slika 3.29	Strujni pojačavač u okviru optičkog prijemnika [15]	47
Slika 3.30	Model za male signale strujnog pojačavača sa CSE kolom [15]	48
Slika 3.31	Blok šema optičkog prijemnika [16]	49
Slika 3.32	Električna šema strujnog pojačavača i njegovog <i>replica</i> kola [16]	49
Slika 3.33	Električna šema strujnog oslabljivača i njegove replica strukture sa kolom za oduzimanje struja [16]	50
Slika 3.34	Konvertor struje u napon CVC [16]	51
Slika 3.35	Blok šema optičkog prijemnika [17]	52
Slik <mark>a</mark> 3.36	Električna šema strujnog prenosnika prve generacije [20]	54
Slika 3.37	Pojednostavljeni model za male signale strujnog prenosnika prve generacije [20]	54
Slika 3.38	<i>Floating</i> naponom kontrolisan otpornik [20]: a) osnovni koncept, b) električna šema gdje je kontrolni napon V_{CI} realizovan kao strujom kontrolisan naponski izvor	56
Slika 3.39	Električna šema naponskog pojačavača i izlaznog stepena u klasi AB [20]	57
Slika 3.40	Osnovni uzrok naponskog ofseta optičkog prijemnika [20]	59
Slika 3.41	Eliminacija naponskog ofseta upotrebom varijabilnog strujnog izvora I _{CANC} [20]	59
Slika 3.42	Električna šema naponom kontrolisanog strujnog izvora koji služi za eliminaciju ofseta [20]	59
Slika 3. <mark>43</mark>	Električna šema optičkog prijemnika [20]	60
Slika 3.44	Blok šema optičkog prijemnika [22]	62
Slika 3.45	Električna šema naponom kontrolisanih strujnih izvora I_{P1} i I_{P2} [22]	64
Slika 3.46	Izvor naponskog ofseta [22]	64
Slika 3.47	Električna šema optičkog prijemnika [22]	65
Slika 3.48	Izvori naponskog ofseta [22]	69
Slika 3.49	Metod eliminacije naponskog ofseta [22]	69
Slika 4.1	Optički prijemnik sa promjenljivom transimpedansom na bazi strujnog pojačavača sa promjenljivim pojačanjem	7 2
Slika 4.2	Princip rada fotodiode	73
Slika 4.3	Poprečni presjek realne fotodiode	73
Slika 4.4	PIN fotodioda	74
Slika 4.5	Poprečni presjek PIN fotodiode [42]	75
Slika 4.6	PIN fotodioda, za određivanje jednačina električnog polja i grafički prikaz električnog polja unutar oblasti prostornog tovara PIN fotodiode	ı 77
Slika 4.7	Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na bazi osnovne translinearne petlje sa bipolarnim tranzistorima	e 79
Slika 4.8	Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na baz modifikovane translinearne petlje sa bipolarnim tranzistorima	i 83
Slika 4.9	Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na baz modifikovane translinearne petlje sa bipolarnim tranzistorima i kolom za eliminaciju naponskog ofseta	i g 87
slika 4.10	Kompletna električna šema optičkog prijemnika sa promjenljivom transimpedansom na baz translinearne petlje sa bipolarnim tranzistorima	i 88
Slika 4.11	Model za male signale optičkog prijemnika sa promjenljivom transimpedansom na baz translinearne petlje sa bipolarnim tranzistorima	i 91
	Zavisnost prirodne učestanosti warna, od kontrolne struja I. so akujuslasta on konscitivnošći	

Slika 4.13	Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom
Slika 4.14	Zavisnost prirodne učestanosti ω_{oVCCA} od odnosa kontrolnih struja I_{C2}/I_{C1} , sa kontrolnom strujom I_{C1} kao parametrom
Slika 4.15	Zavisnost faktora Q_{VCCA} od odnosa kontrolnih struja I_{C2}/I_{C1} , sa kontrolnom strujom I_{C1} kao parametrom
Slika 4.16	Model za male signale sa generatorima šuma optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima
Slika 5.1	Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.2	Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.3	Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum- germanijumska tehnologija
Slika 5.4	Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.5	Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.6	Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.7	Zavisnost prirodne učestanosti $\omega_{\mu\nu CCA}$ od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.8	Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.9	Zavisnost prirodne učestanosti ω_{0VCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija
Slika 5.10	Zavisnost faktora Q_{VCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum- germanijumska tehnologija
Slika 6.1	Blok-šeme čipova koje uzimaju u obzir induktivnosti <i>bond</i> žica, kapacitivnosti <i>pad</i> -ova i <i>RC</i> filtar: a) tia105a, b) tia107, c) WG_A2126
Slika 6.2	Mikrofotografije čipova: a) tia105a, b) tia107, c) WG_A2127
Slika 6.3	Zavisnost izlaznog napona V_{OlT} optičkog prijemnika od struje fotodiode I_{PD} za kontrolni napon V_{C2} u opsegu 0.2 V< V_{C2} < 1.8 V, sa korakom ΔV_{C2} =50 mV, za čip tia105a: a) za struju fotodiode I_{PD} u opsegu 0 A< I_{PD} < 500 μ A, b) za struju fotodiode I_{PD} u opsegu 0 A< I_{PD} < 5 μ A
Slika 6.4	Greška linearnosti E_L optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tia 105a
Slika 6.5	Transimpedansa T optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tia 105a134
Slika 6.6	Izmjerena foto-osjetljivost S optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za talasnu dužinu svjetlosti λ =675 nm, za čip tia105a

Slika 6.7	Izmjereni naponski ofset V_{OFF} optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tial 05a
Slika 6. 8	Maksimalna dispicaija snage P_{max} optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tia 105a
Slika 6.9	Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i <i>network</i> analyzer-a
Slika 6.10	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =0.2 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.11	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.25 V: a) tia105a, b) tia107, c) WG_A2140
Slika 6.12	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.3 V: a) tia105a, b) tia107, c) WG_A2141
Slika 6.13	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.35 V: a) tia105a, b) tia107, c) WG_A2142
Slika 6.14	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.4 V: a) tia105a, b) tia107, c) WG_A2143
Slika 6.15	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.45 V: a) tia105a, b) tia107, c) WG_A2144
Slika 6.16	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.5 V: a) tia105a, b) tia107, c) WG_A2145
Slika 6.17	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.55 V: a) tia105a, b) tia107, c) WG_A2146
Slika 6.18	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.6 V: a) tia105a, b) tia107, c) WG_A2147
Slika 6.19	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.65 V: a) tia105a, b) tia107, c) WG_A2148
Slika 6.20	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.7 V: a) tia105a, b) tia107, c) WG_A2149
Slika 6.21	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.75 V: a) tial05a, b) tial07, c) WG_A2150
Slika 6.22	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.8 V: a) tia105a, b) tia107, c) WG_A2151
Slika 6.23	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.85 V: a) tia105a, b) tia107, c) WG_A2152
Slika 6.24	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.9 V: a) tia105a, b) tia107, c) WG_A2153
Slika 6.25	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.95 V: a) tia105a, b) tia107, c) WG_A2154
Slika 6.26	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V _{Cl} =0.5 V i V _{Cl} =1 V: a) tia105a, b) tia107, c) WG_A2155
Slika 6.27	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V _{CI} =0.5 V i V _{C2} =1.05 V: a) tia105a, b) tia107, c) WG_A2156
Slika 6.28	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.1 V: a) tia105a, b) tia107, c) WG_A2157
Slika 6.29	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.15 V: a) tia105a, b) tia107, c) WG_A2158

Slika 6.30	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =1.2 V: a) tia105a, b) tia107, c) WG_A2159
Slika 6.31	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.25 V: a) tia105a, b) tia107, c) WG_A2160
Slika 6.32	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.3 V: a) tia105a, b) tia107, c) WG_A2161
Slika 6.33	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.35 V: a) tia107, b) WG_A2162
Slika 6.34	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V _{CI} =0.5 V i V _{C2} =1.4 V: a) tia107
Slika 6.35	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V _{CI} =0.5 V i V _{C2} =1.45 V, tia107164
Slika 6.36	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.5 V, tia107
Slika 6.37	Zavisnost izmjerenog frekventnog opsega od foto-osjetljivosti optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima i prethodnih optičkih prijemnika sa promjenljivom transimpedansom
Slika 6.38	Frekventni opseg $f_{.3dB}$ optičkog prijemnika u funkciji kontrolnog napona V_{C2} 168
Slika 6.39	lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.2 V (7=12.9 MΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji
Slika 6.40	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V _{CI} =0.5 V i V _{C2} =0.3 V (T=2.5 MΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji170
Slika 6.41	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.4 V (T=869.1 k Ω), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji171
Slika 6.42	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{CI} =0.5 V i V_{CI} =0.5 V (T=330.4 Ω), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji171
Slika 6.43	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{C2} =1 V (T =16.9 k Ω), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji172
Slika 6.44	Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{C2} =1.3 V (T=5.5 kΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji172
Slika 6.45	Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i communication signal analyzer-a173
Slika 6.46	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.2 V: a) tia105a, b) tia107174
Slika 6.47	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.25 V: a) tia105a, b) tia107175
Slika 6.48	lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V _{CI} =0.5 V i V _{C2} =0.3 V: a) tia105a, b) tia107, c) WG_A2176
Slika 6.49	lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V _{Cl} =0.5 V i V _{Cl} =0.35 V: a) tia105a, b) tia107, c) WG_A2177
Slika 6.50	lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V _{CI} =0.5 V i V _{C2} =0.4 V: a) tia105a, b) tia107, c) WG_A2178

Slika 6.51	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.45 V: a) tia105a, b) tia107, c) WG_A2179
Slika 6.52	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.5 V: a) tia105a, b) tia107, c) WG_A2180
Slika 6.53	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.55 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.54	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.6 V: a) tia105a, b) tia107, c) WG_A2182
Slika 6.55	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.65 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.56	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.7 V: a) tia105a, b) tia107, c) WG_A2184
Slika 6.57	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.75 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.58	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.8 V: a) tia105a, b) tia107, c) WG_A2186
Slika 6.59	lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.85 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.60	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.9 V: a) tia105a, b) tia107, c) WG_A2188
Slika 6.61	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.95 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.62	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1 V: a) tia105a, b) tia107, c) WG_A2190
Slika 6.63	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.05 V: a) tia105a, b) tia107, c) WG_A2191
Slika 6.64	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.1 V: a) tia105a, b) tia107, c) WG_A2192
Slika 6.65	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V _{CI} =0.5 V i V _{C2} =1.15 V: a) tia105a, b) tia107, c) WG_A2193
Slika 6.66	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.2 V: a) tia105a, b) tia107, c) WG_A2194
Slika 6.67	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.25 V: a) tia105a, b) tia107, c) WG_A2195
Slika 6.68	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.3 V: a) tia105a, b) tia107196
Slika 6.69	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.35 V: a) tia105a, b) tia107197
Slika 6.70	Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.4 V: a) tia107198
Slika 6.71	Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i <i>spectrum</i> analyzer-a
Slika 6.72	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.2 V: a) tia105a, b) tia107201
Slika 6.73	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.25 V: a) tia105a, b) tia107, c) WG_A2

Slika 6.74	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.3$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.75	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.35 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.76	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.4$ V: a) tial05a, b) tial07, c) WG_A2
Slika 6.77	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.45$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.78	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.5$ V: a) tial05a, b) tial07, c) WG_A2
Slika 6.79	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.55$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.80	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.6$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.81	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.65$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.82	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.7$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.83	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.75$ V: a) tial05a, b) tial07, c) WG_A2
Slika 6.84	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.8$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.85	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.85 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.86	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.9 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.87	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.95 V: a) tia105a, b) tia107, c) WG_A2
Slika 6.88	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1$ V: a) tia105a, b) tia107, c) WG_A2217
Slika 6.89	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1.05$ V: a) tia105a, b) tia107, c) WG_A2
Slika 6.90	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{Cl}=0.5$ V i $V_{C2}=1.1$ V: a) tia105a, b) tia107. c) WG_A2

Slika 6.91	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1.15$ V: a) tia105a, b) tia107, c) WG_A2	.220
Slika 6.92	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1.2$ V: a) tial05a, b) tial07, c) WG_A2	.221
Slika 6.93	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1.25$ V: a) tia105a, b) tia107, c) WG_A2	.222
Slika 6.94	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1.3$ V: a) tia105a, b) tia107, c) WG_A2	223
Slika 6.95	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =1.35 V: a) tial05a, b) tial07, c) WG_A2	224
Slika 6.96	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=1.4$ V: a) tial05a, b) tial07, c) WG_A2	225
Slika 6.97	Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW =30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =1.45 V: a) tia107, b) WG_A2	226
Slika 6.98	lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg $RBW=30$ kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{CI}=1.5$ V: a) tial05a, b) tial07, c) WG_A2	227
Slika 6.99	Snaga šuma optičkog prijemnika za frekvenciju 50 MHz i rezolucioni frekventni opseg RBW =30 kHz u funkciji kontrolnog napona V_{C2}	228
Slika A.I	Električna šema iz CADENCE-a čipa tia105a	233
Slika A.2	Električna šema iz CADENCE-a čipa tia107	234
Slika A.3	Električna šema iz CADENCE-a čipa WG_A2	235
Slika A.4	Fizički <i>layout</i> čipa tia 105a	236
Slika A.5	Fizički layout čipa tia 107	237
Slika A.6	Fizički <i>layout</i> čipa WG_A2	238
Slika C. I	Šema štampane ploče za čipove tia105a, tia107 i WG_A2	242
Slika C.2	Štampana ploča za čipove tia105a, tia107, WG_A2: a) "full", b) "top", c) "bot", d) "top+silk" e) "top+silk+docu", f) "top+silk+solderstop"	, 243
Slika D.1	Fotografije štampane ploče za koju je zalijepljen čip tia 105a	245
Slika D.2	Mikrofotografije čipa tia105a	246
Slika D.3	Mikrofotografije čipa tia 107	247
Slika D.4	Mikrofotografije čipa WG_A2	248
Slika E. I	Fotografije iz laboratorije	250

POPIS TABELA

Tabela 5.1	Vrijednosti parametara koji su korišćeni u MATLAB simulacijama111
Tabela 6.1	Eksperimentalni i simulirani (*) rezultati statičkih karakteristika optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (V_{C2} - kontrolni napon, E_L - greška linearnosti, T - transimpedansa, S - foto-osjetljivost, V_{OFF} - naponski ofset, P_{max} - maksimalna potrošnja) za čip tia 105a
Tabela 6.2	Eksperimentalni i simulirani (*) rezultati dinamičkih karakteristika optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (f. 3un - frekventni opseg, noise - snaga šuma za frekvenciju 50 MHz i rezolucioni frekventni opseg od 30 kHz)
Tabela 6.3	Poređenje performansi optičkog prijemnika (čip tia105a) na bazi translinearne petlje sa bipolarnim tranzistorima sa prethodnim rješenjima optičkih prijemnika sa promjenljivom transimpedansom
Tabela B. I	Dimenzije MOSFET-ova optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima

1

POPIS SKRAĆENICA

ARC	Anti-Reflecting Coating
ASIC	Application-Specific Integrated Circuit
AT	Atenuator
BiCMOS	Bipolar Complementary Metal Oxide Semiconductor
BJT	Bipolar Junction Transistor
CA	Current Amplifier
CC	Current Conveyor
CCD	Charge-Coupled Device
CD	Compact Disc
CGDR	Current Gain Dynamic Range
CMOS	Complementary Metal Oxide Semiconductor
CSE	Capacitive Speed Enhancement
CVC	Current-to-Voltage Converter
DVD	Digital Versatile Disc
MOSFET	Metal-Oxide Semiconductor Field-Effect Transistor
OEIC	Optoelectronic Integrated Circuit
PD	Photodiode
RBW	Resolution Bandwidth
TDR	Transimpedance Dynamic Range
TIA	Transimpedance Amplifier
TLP	Translinearna petlja
VCCA	Voltage-Controlled Current Amplifier

1 UVOD

Optoelektronika je oblast nauke koja se bavi izučavanjem elektronskih uredaja koji se mogu koristiti za generisanje, detekciju i kontrolu svjetlosti. Bazira se na kvantno-mehaničkim svojstvima svjetlosti, odnosno, na konverziji svjetlosne energije u električnu energiju i obratno. Prvi pokušaj primjene optoelektronike vezuje se za *Alexander Graham Bell-*a koji je izumio uredaj nazvan fotofon 1880. godine. Predajnik ovog uređaja koristio je običnu sunčevu svjetlost. Malo ogledalo koje je vibriralo pod uticajem zvuka predstavljalo je modulator svjetlosti. Prijemnik se bazirao na foto-električnom efektu izazvanom na hemijskom elementu selenu. Otkriće foto-električnog efekta kod metala, za koje je *Albert Einstein* dobio Nobelovu nagradu za fiziku 1921. godine, predstavlja početak komercijalne optoelektronike. Oblast primjene optoelektronskih uređaja veoma je široka. i kreće se od informacionih tehnologija, automatike i telekomunikacija, preko medicinske i vojne opreme, do potrošačke elektronike i energetike. Aktuelnost optoelektronike u sadašnjem trenutku potvrđena je dodjelom Nobelove nagrade za fiziku 2009. godine *Charles Kuen Kao*-u za dostignuća u oblasti prenosa podataka putem optičkog vlakna, sa jedne, i *Willard S. Boyle*-u i *George E. Smith*-u za otkriće CCD senzora, sa druge strane.

Optički prijemnici predstavljaju posebnu grupu optoelektronskih uređaja koji se baziraju na pretvaranju svjetlosne energije u električnu energiju. Kako je apsorpcija svjetlosti fundamentalni proces prilikom pomenute konverzije energije [1], jedan od osnovnih djelova svakog optičkog prijemnika je fotodetektor. U zavisnosti od primjene, optički prijemnik na svom izlazu daje odgovarajuću električnu veličinu određenog nivoa. Dakle, funkcija optičkog prijemnika je detekcija svjetlosti i njena konverzija u odgovarajuću električnu veličinu.

Posebna klasa optičkih prijemnika koji se koriste u optičkim sistemima za skladištenje podataka (CD, DVD, Blu-Ray) konvertuju lasersku svjetlost reflektovanu od optičkog diska u izlazni napon. Univerzalnost optičke memorije podrazumijeva da je optički prijemnik u stanju da obavlja pomenutu funkciju za različite talasne dužine svjetlosti, za rad u modu čitanja i upisa podataka, kao i u slučaju višeslojnih diskova. Dva osnovna elementa optičkog prijemnika koji ima sposobnost da odgovori na prethodno definisane zahtjeve su fotodioda, koja pretvara svjetlost u struju, i transimpedansni pojačavač, koji pretvara struju fotodiode u napon. Bitno svojstvo optičkog prijemnika ovog tipa je foto-osjetljivost koja se definiše kao odnos izlaznog napona i optičke snage upadne laserske svjetlosti. Foto-osjetljivost je jednaka proizvodu osjetljivosti fotodiode i transimpedanse transimpedansnog pojačavača. Za neizobličen napon konstantne amplitude na izlazu optičkog prijemnika, foto-osjetljivost mora biti promjenljiva iz najmanje tri razloga. Prvo, kako je intenzitet laserske svjetlosti mnogo veći u modu upisa (tokom kojeg se istovremeno sa upisom podataka vrši i čitanje upisanog podatka) nego u modu čitanja podataka, foto-osjetljivost mora da bude varijabilna u širokom opsegu. Drugo, intenzitet laserske svjetlosti koja se reflektuje od unutrašnjeg sloja diska je manji od intenziteta reflektovane svjetlosti od spoljašnjeg sloja kod višeslojnih diskova. Treće, osjetljivost fotodiode zavisi od talasne dužine laserske svjetlosti, iz razloga što laserska svjetlost istog intenziteta a različite talasne dužine generiše različitu struju fotodiode [2]. Za istu optičku snagu upadne laserske svjetlosti, struja fotodiode zavisi od talasne dužine svjetlosti. Talasne dužine laserske svjetlosti koje se koriste u optičkim sistemima za skladištenje podataka su: 780 nm (infra-crvena svjetlost, CD), 660 nm (crvena svjetlost, DVD) i 405 nm (plava svjetlost. Blu-Ray). Osjetljivost fotodiode se razlikuje za navedene talasne dužine svjetlosti i obično se nalazi u opsegu od 0.1 A/W do 0.5 A/W za integrisane fotodiode. Anti-reflektujući sloj ARC (Anti-Reflecting Coating) koji se nanosi na površinu fotodiode u cilju povećanja njene osjetljivosti, optimizovan je svojom debljinom samo za jednu talasnu dužinu svjetlosti [3]. Dakle, kod univerzalnih optičkih sistema za skladištenje podataka, osim foto-osjetljivosti optičkog prijemnika. promjenljiva je i osjetljivost fotodiode. Kako bi se na izlazu optičkog prijemnika dobio napon iste amplitude u svim radnim uslovima, potrebno je da transimpedansa transimpedansnog pojačavača bude varijabilna u širokom opsegu. Pored zahtjeva za široko varijabilnom transimpedansom, izražen je i zahtjev za što većom maksimalnom transimpedansom i što širim frekventnim opsegom optičkog prijemnika. Naime, zbog zahtjeva za smanjenjem potrošnje. optička snaga laserske svjetlosti se permanentno smanjuje. Samim tim, foto-osjetljivost optičkog prijemnika, kao i osjetljivost fotodiode treba da budu što veće. Zahtjev za većim frekventnim opsegom je posljedica generalne težnje prema operacijama visoke brzine.

Dizajn transimpedansnog pojačavača sa varijabilnom transimpedansom u širokom opsegu. uz malu potrošnju i veliki frekventni opseg, je najzahtjevniji zadatak prilikom projektovanja optoelektronskog integrisanog kola, odnosno, integrisanog kola koje na jednom čipu sadrži i fotodiodu i transimpedansni pojačavač. Optički prijemnici sa varijabilnom transimpedansom se generalno mogu podijeliti u tri grupe. Prvu grupu čine optički prijemnici sa promjenljivom transimpedansom sa otpornim mrežama [4]-[11]. Na ovaj način se može dobiti svega nekoliko različitih transimpedansi. Stabilnost ovog tipa optičkog prijemnika sa varijabilnom transimpedansom ugrožena je kapacitivnošću fotodiode. Iz tog razloga potrebno je izvršiti frekvencijsku kompenzaciju umetanjem kondenzatora paralelno otporniku, u granu negativne povratne sprege. Parazitne kapacitivnosti prekidačkih tranzistora, pomoću kojih se mijenja transimpedansa, značajno redukuju frekventni opseg optičkog prijemnika. Drugi tip optičkih prijemnika sa promjenljivom transimpedansom baziran je na strujnim pojačavačima sa varijabilnim pojačanjem [12]-[16]. Kod optoelektronskih integrisanih kola iz ove grupe veliki dinamički opseg transimpedansi često znači i relativno veliku potrošnju. Treći tip optičkih prijemnika sa promjenljivom transimpedansom baziran je na kombinaciji strujnog i naponskog procesiranja, sa strujnim prenosnicima i naponom kontrolisanim otpornicima [17]-[23]. Kod ovih rješenja postignuta je visoka foto-osjetljivost i linearnost, mala potrošnja, mali ofset, dok je frekventni opseg nezavisan od kapacitivnosti fotodiode.

Cilj ove doktorske disertacije je projektovanje, fabrikacija i eksperimentalna valorizacija optičkog prijemnika sa promjenljivom transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petlje sa bipolarnim tranzistorima koji je namijenjen univerzalnim optičkim memorijama. Realizacija ovog optičkog prijemnika ostvarena je u dvije integrisane tehnologije: 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Performanse ovog optičkog prijemnika treba da ispunjavaju sljedeće uslove:

- Maksimalna transimpedansa T_{max} optičkog prijemnika najmanje $T_{max}=5$ M Ω ,
- Maksimalna foto-osjetljivost S_{max} optičkog prijemnika najmanje $S_{max}=2500 \text{ mV/}\mu\text{W}$,
- Dinamički opseg transimpedansi T_{max}/T_{mm} (foto-osjetljivosti S_{max}/S_{mm}) najmanje $T_{max}/T_{mm}=S_{max}/S_{mm}=2100$.
- Maksimalni proizvod transimpedanse i frekventnog opsega (*Tf*-3dB)max najmanje (*Tf*-3dB)max=130 TΩHz,
- Lincarnost strujno-naponskih karakteristika, naponski ofset, disipacija snage, frekventni opseg, stabilnost, šum,... - na nivou postojećih rješenja optičkih prijemnika namijenjenih za univerzalne optičke memorije.

Dakle. cilj je da se u pogledu maksimalne transimpedanse T_{max} , maksimalne foto-osjetljivosti S_{max} , dinamičkog opsega transimpedansi T_{max}/T_{min} (foto-osjetljivosti S_{max}/S_{min}) i maksimalnog proizvoda transimpedanse i frekventnog opsega $(Tf_{-3dB})_{max}$ postignu bolji rezultati od svih do sada postignutih odgovarajućih rezultata u oblasti optičkih prijemnika namijenjenih univerzalnim optičkim memorijama [15], [22]. Sa druge strane, ostale karakteristike ovog optičkog prijemnika treba da budu na nivou postojećih rješenja, kako bi optički prijemnik, koji je cilj ovog doktorata, predstavljao najbolji dizajn ostvaren do sada u svijetu. Predloženi optički prijemnik sa promjenljivom transimpedansom pripada grupi optoelektronskih integrisanih kola sa strujnim pojačavačima sa promjenljivim pojačanjem. Naponom kontrolisan strujni pojačavač baziran je na translinearnoj petlji sa bipolarnim tranzistorima. Integrisana fotodioda je PIN tipa.

Doktorska disertacija se sastoji od sedam poglavlja, sa uvodom kao prvim i zaključkom kao posljednjim poglavljem. U drugom poglavlju izložene su opšte karakteristike optičkih prijemnika i njihova podjela. Treće poglavlje predstavlja detaljan pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom. Četvrto poglavlje odnosi se na optički prijemnik sa varijabilnom transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petlje sa bipolarnim tranzistorima. Najprije je data osnovna struktura optičkog

prijemnika sa promjenljivom transimpedansom na bazi strujnog pojačavača sa promjenljivim pojačanjem. Potom je analizirana PIN fotodioda koja je korišćena pri realizaciji predloženog optičkog prijemnika. Detaljno je opisan postupak kontrole transimpedanse optičkog prijemnika pomoću kontrolnih struja primjenom translinearne petlje sa bipolarnim tranzistorima. Prikazana je kompletna električna šema predloženog optičkog prijemnika i ukazano je na pojedine funkcionalne cjeline. Ovo poglavlje sadrži i potpunu analizu frekventnog odziva i stabilnosti optičkog prijemnika, kao i analizu šuma. Optički prijemnik sa varijabilnom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima dizajniran je i fabrikovan u dvije različite tehnologije: 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijumgermanijumskoj tchnologiji. U petom poglavlju je, kroz detaljnu uporednu analizu frekventnog odziva i stabilnosti optičkih prijemnika realizovanih u dvije pomenute tehnologije, pokazano da tehnologija sa lošijim performansama daje bolju stabilnost i veći dinamički opseg transimpedansi. Eksperimentalni rezultati i rezultati post-layout simulacija koji se odnose na statičke (greška linearnosti, transimpedansa, foto-osjetljivost, naponski ofset, maksimalna potrošnja) i dinamičke (frekventni odziv, vremenski odziv, šum) karakteristike predloženog optičkog prijemnika, dati su u šestom poglavlju. Detaljno je opisan postupak mjerenja pojedinih karakteristika. U istom poglavlju izvršeno je i poređenje performansi predloženog rješenja sa performansama postojećih optičkih prijemnika sa promjenljivom transimpedansom.

Doktorska disertacija sadrži i dodatke u kojima su prikazane električne šeme i *layout*-i čipova (dodatak A), dimenzije MOSFET-ova i BJT-ova (dodatak B), štampane ploče (dodatak C), fotografije štampanih ploča i mikrofotografije čipova (dodatak D), fotografije iz laboratorije (dodatak E) i odgovarajući MATLAB kodovi korišćeni za uporednu analizu frekventnih odziva optičkog prijemnika realizovanog u dvije različite tehnologije (dodatak F).

Rad na doktorskoj disertaciji započet je u februaru 2008. godine na Elektrotehničkom fakultetu u Podgorici. Tokom jula i avgusta 2008. godine, za vrijeme boravka na *Institute of Electrical Measurements and Circuit Design (Group for Circuit Design), Faculty of Electrical Engineering and Information Technology, Vienna University of Technology*, optički prijemnik je isprojektovan u integrisanoj silicijumskoj BiCMOS tehnologiji od 0.6 µm i integrisanoj silicijum-germanijumskoj BiCMOS tehnologiji od 0.35 µm, korišćenjem softverskog paketa CADENCE. Parametri kola su optimizovani za lasersku svjetlost talasne dužine λ =675 nm (DVD aplikacije). Zahvaljujući širokom dinamičkom opsegu, ovaj optički prijemnik može da se koristi i za lasersku svjetlost talasne dužine λ =780 nm (CD aplikacije), odnosno, za lasersku svjetlost talasne dužine λ =405 nm (Blu-Ray aplikacije). Optički prijemnik je realizovan na nivou električne šeme, kao i na nivou kompletnog fizičkog *layout*-a. Urađene su detaljne simulacije na nivou električne šeme, kao i detaljne *post-layout* simulacije. ASIC (*Application-Specific Integrated Circuit*) čipovi sa optičkim prijemnicima o kojima je riječ, fabrikovani su u kompaniji XFAB, Njemačka (u integrisanoj silicijumskoj BiCMOS tehnologiji od 0.6 µm) i u kompaniji *Austriamicrosystems* (AMS), Austrija (u integrisanoj silicijum-germanijumskoj BiCMOS tehnologiji od 0.35 µm), tokom proljeća 2009. Eksperimentalna valorizacija ovih ASIC čipova obavljena je tokom jula i avgusta 2009. godine u Opto-laboratoriji na Institute of Electrodynamics, Microwave and Circuit Engineering, Faculty of Electrical Engineering and Information Technology, Vienna University of Technology.

2 PREGLED OPŠTIH KARAKTERISTIKA OPTIČKIH PRIJEMNIKA I NJIHOVA PODJELA

Optički prijemnik predstavlja važan elektronski sklop sa širokom oblašću primjene u telekomunikacijama, instrumentaciji i mjerenjima, multimedijalnim sistemima, automatskom upravljanju, itd. Sastoji se od fotodiode koja pretvara upadnu svjetlost u struju, i transimpedansnog pojačavača koji pretvara struju fotodiode u izlazni napon. Mjerenjem izlaznog napona dobija se informacija o intenzitetu upadne svjetlosti na ulazu optičkog prijemnika. Kod starijih generacija optičkih prijemnika, fotodioda nije bila u sastavu integrisanog kola sa transimpedansnim pojačavačem. Zbog velike kapacitivnosti same fotodiode realizovane u obliku diskretne komponente, kao i kapacitivnosti metalizacija na štampanoj ploči kojima se vršilo povezivanje fotodiode i transimpedansnog pojačavača, frekventni opseg ovakvog optičkog prijemnika bio je veoma ograničen. Sa porastom zahtjeva za povećanjem brzine prenosa podataka, optički prijemnici su počeli da se realizuju u obliku optoelektronskih integrisanih kola, kod kojih se fotodioda i transimpedansni pojačavač nalaze na istom čipu. Optički prijemnici moraju zadovoljiti zahtjeve u pogledu linearnosti strujno-naponskih karakteristika, maksimalne disipacije snage, naponskog ofseta, šuma, što veće transimpedanse i foto-osjetljivosti, što većeg dinamičkog opsega transimpedanse i foto-osjetljivosti,... Posebno je izražen zahtjev za velikom brzinom rada (velikim frekventnim opsegom) i visokom foto-osjetljivošću (odnos izlaznog napona i optičke snage upadne laserske svjetlosti) optičkih prijemnika. Ovo je uzrokovano stalnim porastom brzine prenosa podataka i istovremenim smanjenjem snage laserske svjetlosti koja se koristi kao medijum za prenos podataka i koja predstavlja ulaznu veličinu optičkog prijemnika.

Podjela optičkih prijemnika može se izvršiti na sljedeći način:

- Optički prijemnici sa fiksnom transimpedansom,
- Optički prijemnici sa varijabilnom transimpedansom.

2.1 Optički prijemnici sa fiksnom transimpedansom

Osnovna struktura tipičnog optičkog prijemnika sa fiksnom transimpedansom prikazana je na slici 2.1. Fotodioda je povezana na ulaz transimpedansnog pojačavača realizovanog pomoću operacionog pojačavača sa otpornikom R_F u grani negativne povratne sprege. Anoda fotodiode je uzemljena, dok je njena katoda na referentnom naponu V_{REF} , zahvaljujući djelovanju negativne povratne sprege. Dakle, napon inverzne polarizacije fotodiode je konstantan, jednak referentnom naponu V_{REF} , i ne zavisi od struje fotodiode. Ukupna struja fotodiode I_{pd} protiče kroz otpornik R_F i kao rezultat na izlazu optičkog prijemnika se dobija napon V_{out} :

$$V_{out} = V_{REF} + R_F I_{pd}.$$
(2.1)

Pošto ukupna struja fotodiode I_{pd} ima jednosmjernu (DC) komponentu I_{PD} i naizmjeničnu (AC) komponentu i_{pd} , $I_{pd}=I_{PD}+i_{pd}$, i ukupni izlazni napon optičkog prijemnika V_{out} imaće jednosmjernu komponentu V_{OUT} i naizmjeničnu komponentu v_{out} , $V_{out}=V_{OUT}+v_{out}$. Na osnovu prethodne relacije slijedi da je jednosmjerna transimpedansa optičkog prijemnika T jednaka otpornosti R_F :

$$T = \frac{V_{OUT} - V_{REF}}{I_{PD}} = R_F.$$
 (2.2)

Uzimajući u obzir da kod optičkih prijemnika razlika napona na izlazu V_{out} i referentnog napona V_{REF} treba da bude približno konstantna, V_{out} - $V_{REF}\approx const.$, jasno je da će manjim strujama fotodiode I_{PD} odgovarati veća transimpedansa T optičkog prijemnika, i obratno. Foto-osjetljivost optičkog prijemnika S (sensitivity) definiše se na sljedeći način:

$$S = \frac{V_{OUT} - V_{REF}}{P_{OPT}} = \frac{V_{OUT} - V_{REF}}{I_{PD}} \frac{I_{PD}}{P_{OPT}} = TR , \qquad (2.3)$$

pri čemu je P_{OPT} jednosmjerna optička snaga upadne svjetlosti, dok je R (*responsivity*) osjetljivost fotodiode data izrazom:

$$R = \frac{I_{PD}}{P_{OPT}} \,. \tag{2.4}$$

Slika 2.1 Tipični optički prijemnik sa fiksnom transimpedansom.

Operacioni pojačavač u sklopu optičkog prijemnika modelovan je prenosnom karakteristikom koja ima dominantni pol ω_b i jednosmjerno pojačanje A_0 [24]-[29]:

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_b}}$$
(2.5)

Prenosna karakteristika T(s) optičkog prijemnika prikazanog na slici 2.1 data je izrazom [7]:

$$T(s) = \frac{v_{aut}}{i_{pd}} = \frac{A_0 \omega_h}{C_1} \cdot \frac{1}{s^2 + s \frac{1 + \omega_h R_F C_T}{R_F C_T} + \frac{(A_0 + 1)\omega_h}{R_F C_T}},$$
(2.6)

pri čemu je C_T ukupna kapacitivnost na ulazu operacionog pojačavača jednaka sumi kapacitivnosti fotodiode C_{PD} i ulazne kapacitivnosti operacionog pojačavača C_{OAI} , $C_T = C_{PD} + C_{OAI}$. Kapacitivnost fotodiode C_{PD} je obično mnogo veća od ulazne kapacitivnosti operacionog pojačavača C_{OAI} , $C_{PD} >> C_{OAI}$. Iz prethodnog izraza slijedi da je prirodna učestanost ω_0 :

$$\omega_0 = \sqrt{\frac{\left(A_0 + 1\right)\omega_b}{R_F C_T}},\tag{2.7}$$

dok je faktor Q:

$$Q = \frac{\sqrt{\left(A_0 + 1\right)\omega_h R_\mu C_r}}{1 + \omega_h R_\mu C_r}.$$
(2.8)

Može se uočiti da je frekventni opseg optičkog prijemnika ograničen kapacitivnošću fotodiode C_{PD} , kao i da je frekventni opseg utoliko manji ukoliko je vrijednost transimpedanse $T=R_F$ veća. Takođe, faktor Q je utoliko veći ukoliko je vrijednost vremenske konstante R_FC_T manja. Dakle, sa smanjenjem transimpedanse $T=R_F$ stabilnost optičkog prijemnika prikazanog na slici 2.1 postaje manja (mogućnost pojave oscilacija u vremenskom odzivu postaje veća) usljed povećanja faktora Q.

Kod ovakvih sistema drugog reda moguća je pojava maksimuma u amplitudno-frekventnoj karakteristici (*gain-peaking*), što odgovara pojavi prekoračenja (*overshoot*) i oscilacija u vremenskom odzivu na pobudu odskočnog tipa. Da bi se eliminisao *gain-peaking* u amplitudnofrekventnoj karakteristici optičkog prijemnika, potrebno je da faktor Q bude manji od $1/\sqrt{2}$ [30], što vodi do sljedećeg uslova o odnosu dominantnog pola operacionog pojačavača ω_b i vremenske konstante R_FC_T :

$$\omega_h > \frac{2A_0}{R_F C_T},\tag{2.9}$$

uz pretpostavku da je jednosmjerno pojačanje operacionog pojačavača A_0 dovoljno veliko, $A_0 >>1$ [7]. Dakle, da bi sistem bio stabilan, potrebno je obezbijediti dovoljno veliku vrijednost vremenske konstante R_FC_T , čime se smanjuje frekventni opseg optičkog prijemnika.

Frekvencijska kompenzacija optičkog prijemnika prikazanog na slici 2.1, može se izvršiti umetanjem kompenzacionog kondenzatora C_F u granu negativne povratne sprege [7], paralelno otporniku R_F , slika 2.2.

Polazeći od prenosne karakteristike (2.6) prethodno opisanog optičkog prijemnika, slijedi da je prenosna karakteristika T(s) optičkog prijemnika sa kompenzacionom kapacitivnošću C_F data izrazom:

$$T(s) = \frac{v_{out}}{i_{pd}} = \frac{A_0 \omega_h}{C_T} \cdot \frac{1}{\left(1 + \frac{C_F}{C_T}\right) \left\{s^2 + s \frac{C_T}{C_T + C_F} \left[\omega_h + \frac{1}{R_F C_T} + \frac{(1 + A_0) \omega_h C_F}{C_T}\right] + \frac{(1 + A_0) \omega_h}{R_F (C_F + C_T)}\right\}}$$
(2.10)

Na osnovu prethodne relacije dobija se da je prirodna učestanost ω_0 :

$$\omega_0 = \sqrt{\frac{(1+A_0)\omega_b}{R_F(C_F + C_T)}} \approx \sqrt{\frac{A_0\omega_b}{R_F(C_F + C_T)}} \approx \sqrt{\frac{A_0\omega_b}{R_FC_T}}, \qquad (2.11)$$

dok je faktor Q:

$$Q = \frac{\sqrt{\frac{A_0\omega_h}{R_F(C_F + C_T)}}}{\left(1 + \frac{C_F}{C_T}\right)\left[\omega_h + \frac{1}{R_FC_T} + \frac{(1 + A_0)\omega_hC_F}{C_T}\right]} \approx \frac{\sqrt{\frac{R_FC_T}{A_0\omega_h}}}{\frac{1}{A_0\omega_h} + R_F\left(C_F + \frac{C_T}{A_0}\right)}.$$
(2.12)

Prilikom izvođenja relacija (2.11) i (2.12), uzeto je u obzir da je kapacitivnost kompenzacionog kondenzatora C_F mnogo manja od kapacitivnosti fotodiode C_{PD} , C_{PD} >> C_F , kao i da je jednosmjerno pojačanje operacionog pojačavača A_0 dovoljno veliko, A_0 >>1. Može se uočiti da je frekventni opseg ograničen kapacitivnošću fotodiode C_{PD} , kao i da je frekventni opseg utoliko manji ukoliko je vrijednost transimpedanse $T=R_F$ veća. Optimalna vrijednost kompenzacione kapacitivnosti C_F može se dobiti iz uslova $Q<1/\sqrt{2}$ [30]. Naime, za stabilan sistem potrebno je izabrati:

$$C_{F} > \sqrt{\frac{2C_{T}}{A_{0}\omega_{b}R_{F}}} - \frac{C_{T}}{A_{0}} - \frac{1}{A_{0}\omega_{b}R_{F}}.$$
(2.13)

Slika 2.2 Optički prijemnik sa fiksnom transimpedansom sa kompenzacionim kondenzatorom.

Dakle, stabilnost optičkog prijemnika se može ostvariti povoljnim odabirom kompenzacione kapacitivnosti C_F , čime se neće ugroziti frekventni opseg optičkog prijemnika (2.11) ukoliko je kompenzaciona kapacitivnost C_F (2.13) mnogo manja od kapacitivnosti fotodiode C_{PD} .

2.2 Optički prijemnici sa promjenljivom transimpedansom

Potreba za optoelektronskim kolima sa promjenljivom transimpedansom (pojačanjem) postala je naročito izražena sa pojavom prvih optičkih prijemnika u sklopu optičkih memorija kao što su CD, DVD i Blu-Ray. Zavisnost izlaznog napona Vout optičkog prijemnika sa promjenljivom transimpedansom od struje fotodiode Ipd sa odgovarajućom optičkom snagom upadne laserske svjetlosti prikazana je na slici 2.3. Ukupna optička snaga Popt laserske svjetlosti reflektovane sa površine optičkog diska za skladištenje podataka data je kao $P_{opt}=P_{OPT}+p_{opt}$, gdje je POPT jednosmjerna komponenta optičke snage, dok je popt naizmjenična komponenta optičke snage. Pozitivna jednosmjerna komponenta optičke snage uvijek postoji, bez obzira na to da li ukupna optička snaga odgovara logičkoj "0" ili logičkoj "1" na površini optičkog diska. Vremenski dijagram ukupne optičke snage laserske svjetlosti reflektovane sa površine optičkog diska za skladištenje podataka, prikazan na slici 2.3, odgovara digitalnoj sekvenci "1010". Logičkoj "1" odgovara laserska svjetlost čija je ukupna optička snaga Popl u granicama $P_{opr} > P_{OPT} > 0$, dok logičkoj "0" odgovara laserska svjetlost čija je ukupna optička snaga P_{opr} u granicama 0<Popt</p> udubljenja na površini optičkog diska. Ukupna struja fotodiode I_{pd} data je kao $I_{pd}=I_{PD}+i_{pd}$, gdje je IPD jednosmjerna komponenta struje fotodiode koja odgovara jednosmjernoj komponenti POPT optičke snage, dok je ipd naizmjenična komponenta struje fotodiode koja odgovara naizmjeničnoj komponenti popi optičke snage. S obzirom da jednosmjerna komponenta optičke snage POPT uvijek postoji, jednosmjerna komponenta struje fotodiode IPD, takođe, uvijek postoji. Ukupni izlazni napon V_{out} optičkog prijemnika dat je izrazom $V_{out} = V_{OUT} + v_{out}$, gdje je V_{OUT} jednosmjema komponenta i vout naizmjenična komponenta izlaznog napona. Nagib karakteristika zavisnosti izlaznog napona Vout optičkog prijemnika sa promjenljivom transimpedansom od struje fotodiode I_{pd} odgovara transimpedansi T optičkog prijemnika $T = dV_{out}/dI_{pd} = v_{out}/i_{pd}$. Jasno je da većim

Slika 2.3 Zavisnost izlaznog napona V_{out} optičkog prijemnika sa promjenljivom transimpedansom od struje fotodiode I_{pel} sa odgovarajućom optičkom snagom upadne laserske svjetlosti P_{opt} .

transimpedansama $T=dV_{out}/dI_{pd}=v_{out}/i_{pd}$ optičkog prijemnika odgovara manja jednosmjerna struja fotodiode I_{PD} , i obratno, što je u skladu sa relacijom (2.2). Slično kao i kod optičkih prijemnika sa fiksnom transimpedansom, i kod optičkih prijemnika sa promjenljivom transimpedansom postoji referentni napon V_{REF} . Maksimalna razlika između ukupnog izlaznog napona V_{out} i referentnog napona V_{REF} mora biti jednaka za sve transimpedanse [3]. Kako bi se ostvario maksimalan opseg izlaznog napona (V_{out} - V_{REF})_{max} (obično reda 1 V), transimpedansa transimpedansnog pojačavača mora biti promjenljiva u širokom opsegu. Jednosmjerni izlazni napon mora se nalaziti u sredini ukupnog radnog opsega izlaznog napona V_{REF}
 V_{out}
 V_{REF} +1 V kako bi se na izlazu dobio signal maksimalne amplitude bez izobličenja. Dakle, jednosmjerna vrijednost napona na izlazu je
 V_{OUT} = V_{REF} +0.5 V za svaku transimpedansu. Drugim riječima, razlika između jednosmjernog
izlaznog napona V_{OUT} i referentnog napona V_{REF} je V_{OUT} - V_{REF} =0.5 V za svaku transimpedansu.

Na slici 2.4 je prikazan postupak čitanja podataka sa optičkog diska. Laserski snop od izvora, preko ogledala/propusnika koje usmjerava svjetlost ka disku i sistema za fokusiranje, pada na optički disk. Kada laserski snop pogodi polje na stazi diska, svjetlost se odbija. Odbijeni laserski snop se preko ogledala/propusnika i sistema za fokusiranje usmjerava na fotodiodu optičkog prijemnika. Optički prijemnik na svom izlazu daje visok naponski nivo i na taj način je pročitana logička "1". Sa druge strane, kada laserski snop padne na udubljenje na stazi diska, nema odbijanja svjetlosti od diska. Fotodioda u tom slučaju nije osvijetljena i optički prijemnik na svom izlazu daje nizak naponski nivo. Na taj način pročitana je logička "0".

Slika 2.4 Postupak čitanja podataka sa optičkog diska.

Posljednjih godina prisutan je trend realizacije univerzalnih optičkih memorija. Pod univerzalnom optičkom memorijom podrazumijeva se optoelektronsko integrisano kolo koje ima sposobnost obavljanja širokog spektra različitih radnih operacija kao što su:

- Rad pri različitim talasnim dužinama laserske svjetlosti: λ=780 nm (infracrvena svjetlost) za CD, λ=660 nm (crvena svjetlost) za DVD, λ=405 nm (plava svjetlost) za Blu-Ray,
- Rad u modovima čitanja i pisanja podataka,
- Rad sa višeslojnim diskovima.

Transimpedansni pojačavači moraju imati kapacitet da proizvedu dovoljno veliki analogni nivo logičke jedinice (obično oko 1 V) za različite talasne dužine laserske svjetlosti (infracrvena, crvena, plava), za operacije čitanja i upisa podataka, kao i za višeslojne diskove. Fotodioda za lasersku svjetlost različite talasne dužine, pri istoj optičkoj snazi upadne svjetlosti, proizvodi struje različitih intenziteta. Ovo je posljedica različitih osjetljivosti jedne iste fotodiode za različite talasne dužine svjetlosti. Za PIN fotodiode ove osjetljivosti se kreću od 0.1 A/W do 0.5 A/W, u zavisnosti od talasne dužine laserske svjetlosti. Da bi se na izlazu optičkog prijemnika dobio isti analogni nivo logičke jedinice za laserske snopove različitih talasnih dužina, transimpedansni pojačavač mora imati različito pojačanje. Intenzitet laserske svjetlosti prilikom upisa podataka u optoelektronsku memoriju je značajno veći od intenziteta laserske svjetlosti prilikom čitanja podataka. Ovo je uzrokovano činjenicom da je prilikom upisa podataka potrebno istopiti (burn) oblast submikronskih dimenzija na površini diska djelovanjem laserskog snopa. Istovremeno sa procesom upisivanja podataka obavlja se i proces čitanja podataka na bazi laserskog snopa reflektovanog od površine diska koji pada na fotodiodu. Kako je optička snaga odbijenog laserskog snopa u modu upisa podataka mnogo veća od optičke snage odbijenog laserskog snopa u modu čitanja podataka, pojačavač u modu upisa podataka mora smanjiti svoju transimpedansu kako bi se na izlazu dobio isti analogni nivo logičke jedinice. Intenzitet laserske svjetlosti odbijene od unutrašnjeg sloja je značajno manji od intenziteta laserske svjetlosti odbijene od spoljašnjeg sloja diska. Da bi se dobio isti analogni nivo logičke jedinice na izlazu optičkog prijemnika prilikom čitanja podataka sa unutrašnjeg sloja, pojačavač mora povećati svoju transimpedansu. Dakle, transimpedansni pojačavači treba da posjeduju široko kontrolabilna pojačanja kako bi mogli da zadovolje zahtjeve univerzalnih optičkih memorija. Drugim riječima, optički prijemnici sa promjenljivim pojačanjem moraju zadovoljiti zahtjeve u pogledu što većeg dinamičkog opsega transimpedansi (odnos maksimalne i minimalne transimpedanse), odnosno, što većeg dinamičkog opsega foto-osjetljivosti (odnos maksimalne i minimalne foto-osjetljivosti). Postojeći optički prijemnici sa promjenljivom transimpedansom mogu se podijeliti u tri grupe:

- Sistemi sa otpornim mrežama,
- Sistemi sa strujnim pojačavačima sa promjenljivim pojačanjem,

 Sistemi sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja.

2.2.1 Optički prijemnici sa otpornim mrežama

Optički prijemnici sa diskretnim vrijednostima transimpedansi na bazi prekidačkih tehnika [7], predstavljaju najstariji tip optoelektronskih kola sa promjenljivim pojačanjem, slika 2.5. Transimpedansni pojačavač se projektuje kao operacioni pojačavač sa mrežom fiksnih otpornika u grani negativne povratne sprege na čiji ulaz se dovodi struja fotodiode. Ova mreža sastoji se od paralelno vezanih otpornika, pri čemu se svaki pojedinačno može uključiti u kolo ili isključiti iz njega preko sistema bilateralnih CMOS prekidača. Na taj način se mijenja ekvivalentna otpornost u grani negativne povratne sprege koja je jednaka transimpedansi optičkog prijemnika (2.14).

Ovakvi sistemi imaju problem veoma izraženog uticaja kapacitivnosti fotodiode na frekventnu karakteristiku optičkog prijemnika. Naime, kao i u slučaju optičkih prijemnika sa fiksnom transimpedansom, u frekventnoj karakteristici se javlja maksimum čiji je intenzitet funkcija kapacitivnosti $C_T = C_{PD} + C_{OAI}$, pri čemu je C_{PD} kapacitivnost fotodiode i C_{OAI} ulazna kapacitivnost operacionog pojačavača. Suviše izražen maksimum frekventne karakteristike, odnosno, suviše veliki faktor Q prenosne karakteristike optičkog prijemnika, uzrokuje pojavu prekoračenja i oscilacija u vremenskom odzivu na pobudu odskočnog tipa. U cilju eliminisanja ove pojave vrši se frekvencijska kompenzacija primjenom kondenzatora paralelno vezanih otpornicima u grani negativne povratne sprege. Kapacitivnosti ovih kompenzacionih kondenzatora su funkcija ne samo kapacitivnosti fotodiode nego i transimpedanse optičkog prijemnika, relacija (2.13). Dakle, za različite transimpedanse (različit broj paralelno vezanih otpornika u grani negativne povratne sprege) potrebno je koristiti kompenzacione kondenzatore različitih kapacitivnosti. Ovi sistemi uglavnom posjeduju samo dvije transimpedanse: jednu (veću) kada je u granu negativne povratne sprege uključen samo jedan otpornik, i drugu (manju) kada su u granu negativne povratne sprege uključena dva paralelno vezana otpornika korišćenjem jednog bilateralnog CMOS prekidača:

$$T = \begin{cases} R_{F1}, & V_{SW} = 0\\ R_{F1} \parallel R_{F2}, & V_{SW} = V_{DD} \end{cases}.$$
 (2.14)

Značajan problem predstavljaju parazitne kapacitivnosti samog bilateralnog CMOS prekidača koje u velikoj mjeri smanjuju frekventni opseg optičkog prijemnika.

Posebnu grupu čine optički prijemnici na bazi otpornih mreža kod kojih se transimpedansa mijenja aktiviranjem, odnosno, deaktiviranjem pojedinih otpornosti bez upotrebe prekidačkih tehnika. Prethodna funkcija se može ostvariti uvođenjem sistema za automatsku kontrolu pojačanja [4], [5], ili, odgovarajućom kombinacijom kontrolnih napona [6].

Slika 2.5 Tipični optički prijemnik sa diskretnim vrijednostima transimpedansi na bazi prekidačkih tehnika.

2.2.2 Optički prijemnici sa strujnim pojačavačima sa promjenljivim pojačanjem

Kod ovog tipa optičkih prijemnika transimpedansni pojačavač se sastoji od strujnog pojačavača i konvertora struje u napon [12]-[16], slika 2.6. Strujni pojačavač CA (*Current Amplifier*) ima promjenljivo pojačanje A_{CA} koje je funkcija kontrolnog napona V_C , $A_{CA}=f(V_C)$. Konvertor struje u napon CVC (*Current-to-Voltage Converter*) sastoji se od operacionog pojačavača sa otpornikom R_F u grani negativne povratne sprege. Transimpedansa optičkog prijemnika je proporcionalna otpornosti u grani negativne povratne sprege operacionog pojačavača, a faktor proporcionalnosti jednak je pojačanju strujnog pojačavača:

$$T = \frac{V_{out} - V_{REF}}{I_{pd}} = \frac{I_{cvc}}{I_{pd}} \frac{V_{out} - V_{REF}}{I_{cvc}} = A_{CA}R_{F},$$
(2.15)

gdje je:

$$A_{CA} = \frac{I_{eve}}{I_{pvl}}$$
(2.16)

pojačanje strujnog pojačavača. Zahvaljujući promjenljivom pojačanju strujnog pojačavača, i transimpedansa ovog tipa optičkog prijemnika je takođe promjenljiva. Kapacitivnost C_{TI} predstavlja sumu kapacitivnosti fotodiode C_{PD} i ulazne kapacitivnosti strujnog pojačavača C_{CAI} . $C_{TI}=C_{PD}+C_{CAI}$. Kapacitivnost C_{T2} predstavlja sumu ulazne kapacitivnosti operacionog pojačavača C_{OAI} i izlazne kapacitivnosti strujnog pojačavača C_{CAO} , $C_{T2}=C_{OAI}+C_{CAO}$. Slično kao kod prethodnog tipa optičkih prijemnika, frekvencijska kompenzacija obavlja se umetanjem kondenzatora C_F u granu negativne povratne sprege operacionog pojačavača, paralelno otporniku R_F . S obzirom da se u grani negativne povratne sprege nalazi samo jedan otpornik fiksne

Slika 2.6 Optički prijemnik sa strujnim pojačavačem sa promjenljivim pojačanjem.

otpornosti, izbjegnut je problem koji se javlja prilikom frekvencijske kompenzacije kod optičkih prijemnika na bazi prekidačkih tehnika. Medutim, i kod ovog tipa optičkog prijemnika veoma često je izražen problem značajnog uticaja kapacitivnosti fotodiode na frekventnu karakteristiku.

2.2.3 Optički prijemnici sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja

Kod ovog tipa optičkih prijemnika transimpedansni pojačavač sastoji se od strujnog prenosnika [31]-[38], naponskog pojačavača i naponom kontrolisanog otpornika slika 2.7 [17]-[23]. Struja fotodiode I_{pd} se vodi direktno na strujni ulaz strujnog prenosnika. $I_x=I_{pd}$. Struja sa izlaza strujnog prenosnika I_z , koja je jednaka struji fotodiode, $I_z=I_x=I_{pd}$. vodi se u granu sa naponom kontrolisanim otpornikom R_{VCR} . Otpornost naponom kontrolisanog otpornika R_{ICR} je funkcija kontrolnog napona V_C , $R_{VCR}=f(V_C)$. Pad napona na naponom kontrolisanom otporniku se pojačavaču. Transimpedansa ovog optičkog prijemnika proporcionalna je otpornosti naponom kontrolisanog otpornika, a faktor proporcionalnosti jednak je pojačanju naponskog pojačavača:

$$T = \frac{V_{out} - V_{REF}}{I_{P'}} = \left(1 + \frac{R_2}{R_1}\right) R_{VCR} \,.$$
(2.17)

Kapacitivnost C_{TI} predstavlja sumu kapacitivnosti fotodiode C_{PD} i ulazne kapacitivnosti strujnog prenosnika C_X , $C_{TI}=C_{PD}+C_X$. Kapacitivnost C_{T2} predstavlja sumu ulazne kapacitivnosti operacionog pojačavača C_{OAI} , izlazne kapacitivnosti strujnog prenosnika C_Z i parazitne kapacitivnosti naponom kontrolisanog otpornika C_{ICR} , $C_{T2}=C_{OAI}+C_Z+C_{ICR}$. Optički prijemnici sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja rješavaju problem negativnog uticaja kapacitivnosti fotodiode na frekventnu karakteristiku. Naime, izborom strujnog prenosnika dovoljno male ulazne otpornosti na strujnom priključku. pol koji formiraju kapacitivnost C_{TI} i ulazna otpornost strujnog prenosnika na strujnom priključku

2 Prcgled opštih karakteristika optičkih prijemnika i njihova podjela

Slika 2.7 Optički prijemnik sa naponom kontrolisanim otpornikom koji koristi kombinaciju strujnog i naponskog procesiranja.

ima veliku vrijednost, i nema nikakvog uticaja na frekventnu karakteristiku optičkog prijemnika ovog tipa.

3 Pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom

Optički prijemnici sa promjenljivom transimpedansom mogu se podijeliti u tri grupe:

- Sistemi sa otpornim mrežama,
- Sistemi sa strujnim pojačavačima sa promjenljivim pojačanjem,
- Sistemi sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja.

U ovom poglavlju dat je pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom, po prethodno navedenim grupama. Opisan je princip rada svakog rješenja, izvršena odgovarajuća analiza i navedene osnovne karakteristike kao što su: dinamički opseg transimpedansi, maksimalna i minimalna transimpedansa, frekventni opseg, maksimalni proizvod transimpedanse i frekventnog opsega, ofset, disipacija snage, šum, tehnologija u kojoj je sistem realizovan, površina koju zauzima na čipu itd. Na osnovu sprovedene analize izvedeni su i odgovarajući zaključci.

3.1 Optički prijemnici sa otpornim mrežama

R. G. Meyer i *W. D. Mack* projektovali su transimpedansni pojačavač sa promjenljivim pojačanjem u 0.8 µm BiCMOS tehnologiji [4], [5], namijenjen za optičke prijemnike sa promjenljivom transimpedansom. Osnovna električna šema ovog transimpedansnog pojačavača prikazana je na slici 3.1.

Kontrola pojačanja transimpedansnog pojačavača obavlja se automatski, aktiviranjem, odnosno deaktiviranjem odgovarajućih promjenljivih otpornosti. Ova kontrola se bazira na detektovanju intenziteta ulazne struje I_{in} . Opseg ulazne struje I_{in} podijeljen je na četiri podopsega. Svakom od ovih podopsega ulazne struje I_{in} odgovara određeno pojačanje koje je utoliko veće ukoliko je intenzitet struja u posmatranom podopsegu manji. Za male ulazne struje I_{in} , kada je pojačanje maksimalno, ulazni stepen transimpednasnog pojačavača svodi se na kolo

Slika 3.1 Transimpedansni pojačavač [4].

prikazano na slici 3.2. Ukoliko se pretpostavi da je bazna struja bipolarnog tranzistora Q_1 mnogo manja od struje koja protiče kroz otpornik R_F (stacionarno stanje), $I_{BI} << I_{RF}$, tada je $I_{RF} \approx I_{IN}$, napon na izlazu ulaznog stepena V_{OUTI} iznosi:

$$V_{OUT1} = \frac{R_{\mu}}{R_{B} + R_{2}} \left[V_{CC} - V_{BE4} + \frac{R_{2}}{R_{B}} \left(V_{BE1} + V_{BE2} \right) + R_{2}I_{1} - \frac{R_{2}}{\beta_{4} + 1}I_{2} + \left(\frac{1}{\beta_{4} + 1} - \frac{R_{F}}{R_{B}} \right) R_{2}I_{IN} \right].$$
(3.1)

Uzimajući u obzir da je $R_B \sim 10 \ \Omega << R_2 = 10 \ k\Omega$, $R_F \sim 30 \ k\Omega$, $I_I < 1 \ mA$, $I_2 < 1 \ mA$, $I_{IN} < 3 \ mA$, $\beta_A >> 1$, prethodni izraz se svodi na:

$$V_{OUT1} \approx V_{BE1} + V_{BE2} - R_F I_{IN},$$
 (3.2)

Dakle, pojačanje transimpedansnog pojačavača, za slučaj malih ulaznih struja I_{IN} , određeno je vrijednošću otpornosti R_F . Da bi se ostvarila velika pojačanja, potrebno je da vrijednost otpornosti R_F bude dovoljno velika. Ukoliko bi se otpornik R_F realizovao kao pasivni element, zauzimao bi značajnu površinu, što bi dovelo do problema sa njegovom parazitnom kapacitivnošću. Iz prethodno navedenog razloga, otpornik R_F u sklopu ulaznog stepena transimpedansnog pojačavača prikazanog na slici 3.2 realizovan je korišćenjem aktivnih komponenti, kao strujom kontrolisan otpornik. Ovaj strujom kontrolisan otpornik prikazan je na slici 3.3. Baza BJT-a Q₁ (slika 3.2) vezuje se za drejn MOSFET-a M_{1F} (slika 3.3), dok se emitor BJT-a Q₄ (slika 3.2) vezuje za sors MOSFET-a M_{1F} (slika 3.3). Ovakva realizacija obezbjeđuje dovoljnu preciznost, a MOSFET M_{1F} koji konfiguriše strujom kontrolisan otpornik je dovoljno malih dimenzija, pa je i njegova parazitna kapacitivnost mala. Naponi drejn-sors MOSFET-ova

Slika 3.2 Ulazni stepen transimpedansnog pojačavača [4] za slučaj malih ulaznih struja (kada transimpedansa ima najveće vrijednosti).

 M_{1F} i M_{2F} su dovoljno mali (<200 mV), čime je obezbijeđen njihov omski režim rada, dok su naponi gejt-sors MOSFET-ova M_{1F} i M_{2F} približno jednaki, $V_{GSIF} \approx V_{GS2F}$. Naime, zbog relativno malog napona na otporniku R_F (<200 mV) i zanemarljivo malog napona na otporniku R_B (slika 3.2), i zahvaljujući rednoj vezi diodno vezanih BJT-ova Q_{1F} i Q_{2F} (slika 3.3), sorsevi MOSFET-ova M_{1F} i M_{2F} približno su na istom naponu (2 V_{BE}). Otpornost R_F jednaka je otpornosti kanala MOSFET-a M_{1F} , $R_{DSIF} = V_{DSIF}/I_{DIF}$, i data je izrazom:

$$R_{F} = R_{DS1F} = \frac{I_{2F} \left(\frac{W}{L}\right)_{2F}}{I_{1F} \left(\frac{W}{L}\right)_{1F}} R_{1F}, \qquad (3.3)$$

pri čemu W i L predstavljaju širinu, odnosno, dužinu kanala odgovarajućeg MOSFET-a. MOSFET M_{2F} realizovan je kao paralelna veza osam identičnih MOSFET-ova čije dimenzije su jednake dimenzijama MOSFET-a M_{1F}. Otpornost R_F može se mijenjati promjenom odnosa struja I_{1F} i I_{2F} . Strujni izvori I_{1F} i I_{2F} realizovani su tako da važi $I_{2F}=3I_{1F}$. Na osnovu prethodnog može se zaključiti da je otpornost R_F fiksna i iznosi:

$$R_F = 24R_{1F}.$$
 (3.4)

Za vrijednost otpornosti R_{IF} =1180 Ω , dobija se da je R_F =28.32 k Ω .

Maksimalna vrijednost ulazne struje I_{IN} transimpedansnog pojačavača ograničena je linearnom oblašću rada narednog stepena transimpedansnog pojačavača, odnosno diferencijalnog pojačavača sa pasivnim opterećenjem $R_5=R_6=1.9$ k Ω , sa otpornicima u kolima emitora

Slika 3.3 Strujom kontrolisan otpornik R_F.

 $R_3=R_J=400$ Ω , i polarizacionom strujom $I_J=1$ mA, slika 3.1. Ovaj diferencijalni pojačavač pojačava razliku referentnog napona V_{REF2} i napona na izlazu ulaznog stepena V_{OUTI} uvećanog za napon V_{BE5} . Napon V_{REF2} dobijen je korišćenjem *dummy* transimpedansnog pojačavača. Linearna oblast rada diferencijalnog pojačavača definisana je na sljedeći način [35] :

$$-R_{3}I_{4} < V_{REF2} - V_{OUT1} - V_{BE5} < R_{3}I_{4},$$
(3.5)

što iznosi oko 600 mV. Za prethodno izračunatu vrijednost otpornosti $R_F \approx 28$ k Ω , vrijednost maksimalne ulazne struje bila bi 22 μ A. Da bi transimpedansni pojačavač mogao da prihvati i veće ulazne struje, a pri tome održao linearnost, potrebno je smanjiti transimpedansu kola. Uvedeni su otpornici R_A , R_B , R_C , R_D i R_E , čija je otpornost promjenljiva. Kolo za automatsku kontrolu pojačanja postepeno aktivira otpornike kada ulazna struja I_{IN} dostigne određenu vrijednost. Na taj način pojačanje transimpedansnog pojačavača postaje manje, odnosno, kolo je sposobno da prihvati veću ulaznu struju. Otpornik R_C uveden je da bi se pojačanje transimpedansnog pojačavača smanjilo maksimalno oko tri puta. Napon na izlazu ulaznog stepena transimpedansnog pojačavača V_{OUTI} sada je dat kao:

$$V_{OUT1} = \frac{R_B}{R_B + R_2} \cdot \left[V_{CC} - V_{BE4} + \frac{R_2}{R_B} \left(V_{BE1} + V_{BE2} \right) + R_2 I_1 - \frac{R_2}{\beta_4 + 1} I_2 + \left(\frac{1}{\beta_4 + 1} - \frac{R_{FC}}{R_B} \right) R_2 I_{IN} \right],$$
(3.6)

gdje je $R_{FC}=R_F||R_C$. Uzimajući u obzir da je $R_B\sim 10 \ \Omega << R_2=10 \ k\Omega$, $R_F\sim 30 \ k\Omega$, $R_{FC}\sim 10 \ k\Omega$, $I_1<1 \ mA$, $I_2<1 \ mA$, $I_{IN}<3 \ mA$, $\beta_4>>1$, prethodni izraz se svodi na:

$$V_{OUT1} \approx V_{BE1} + V_{BE2} - R_{FC} I_{IN}$$
 (3.7)

Ukoliko bi otpornost R_C bila mnogo manja od otpornosti R_F , transimpedansa R_{FC} bila bi značajno smanjena u odnosu na R_F , ali bi struja strujnog izvora I_2 morala biti veoma velika. Iz tog razloga, kada dođe do daljeg povećanja ulazne struje I_{IN} , aktivira se otpornost R_A koja prihvata dio te struje. Kada je u kolo uključena i otpornost R_A , napon na izlazu ulaznog stepena transimpedansnog pojačavača V_{OUTI} iznosi:

$$V_{OUT1} = \frac{R_{B}}{R_{B} + R_{2}} \left[V_{CC} - V_{BE4} + \frac{R_{2}}{R_{B}} \left(V_{EE1} + V_{BE2} \right) + R_{2} I_{1} - \frac{R_{2}}{\beta_{4} + 1} I_{2} \right] + \frac{R_{B}}{R_{B} + R_{2}} \left[\frac{1}{\beta_{4} + 1} + \frac{R_{FC} R_{A}}{R_{FC} + R_{A}} \left(\frac{1}{R_{A}} - \frac{1}{R_{B}} \right) \right] R_{2} I_{IN} .$$
(3.8)

Uzimajući u obzir da je $R_B \sim 10 \ \Omega << R_2 = 10 \ k\Omega$, $R_F \sim 30 \ k\Omega$, $R_{FC} \sim 10 \ k\Omega$, $R_A < 10 \ k\Omega$, $I_I < 1 \ mA$, $I_2 < 1 \ mA$, $I_I < 3 \ mA$, $\beta_A >> 1$, prethodni izraz se svodi na:

$$V_{OUT1} \approx V_{BE1} + V_{BE2} - \frac{\frac{R_F R_C}{R_F + R_C} R_A}{\frac{R_F R_C}{R_F + R_C} + R_A} I_{IN} .$$
(3.9)

Aktiviranjem otpornosti R_D , napon na izlazu ulaznog stepena transimpedansnog pojačavača V_{OUTI} postaje:

$$V_{OUT1} = \frac{1}{1 + \left(\frac{1}{R_B} + \frac{1}{R_D}\right) R_2} \left[V_{CC} - V_{BE4} + \frac{R_2}{R_B} \left(V_{BE1} + V_{BE2} \right) + R_2 I_1 - \frac{R_2}{\beta_4 + 1} I_2 \right] + \frac{1}{1 + \left(\frac{1}{R_B} + \frac{1}{R_D}\right) R_2} \left\{ \frac{R_A}{R_{FC} + R_A} \left[\frac{1}{\beta_4 + 1} + R_{FC} \left(\frac{1}{R_A} - \frac{1}{R_B} \right) \right] R_2 I_{IN} + \frac{R_2}{R_D} V_{REF1} \right\}.$$
(3.10)

Uzimajući u obzir da je $R_B \sim 10 \ \Omega << R_2 = 10 \ k\Omega$, $R_F \sim 30 \ k\Omega$, $R_{FC} \sim 10 \ k\Omega$, $R_A < 10 \ k\Omega$, $I_I < 1 \ mA$, $I_2 < 1 \ mA$, $I_{IN} < 3 \ mA$, $\beta_A >> 1$, prethodni izraz se svodi na:

$$V_{OUT1} \approx \frac{R_{D}}{R_{D} + R_{B}} \left(V_{BE1} + V_{BE2} - \frac{\frac{R_{F}R_{C}}{R_{F} + R_{C}}R_{A}}{\frac{R_{F}R_{C}}{R_{F} + R_{C}} + R_{A}} I_{IN} + \frac{R_{B}}{R_{D}} V_{REF1} \right).$$
(3.11)

Napon V_{REFI} dobijen je korišćenjem *dummy* transimpedansnog pojačavača. Pokazuje se da je aktiviranje otpornika R_D u funkciji povećanja frekventnog opsega, a ne u funkciji promjene transimpedanse. Uzimajući u obzir da je $R_D >> R_B$, relacija (3.11) se svodi na relaciju (3.9), što dokazuje da se transimpedansa ne mijenja aktiviranjem otpornika R_D .

Napon sa izlaza ulaznog stepena transimpedansnog pojačavača pojačava se u diferencijalnom pojačavaču, slika 3.1. Bipolarni tranzistori Q_6 i Q_7 su identičnih karakteristika Diferencijalno pojačanje A_d ovog diferencijalnog pojačavača približno iznosi:

$$A_{d} = -\frac{R_{5}}{R_{3} + \frac{2V_{T}}{I_{4}}} = -4.22, \qquad (3.12)$$

gdje je V_T termički napon ($\approx 25 \text{ mV}$ na sobnoj temperaturi). Ukoliko je aktivna otpornost R_E , pojačanje diferencijalnog pojačavača je manje, a samim tim je i transimpedansa manja. U ovom slučaju diferencijalno pojačanje A_d približno je:

$$A_{d} \approx -\frac{\frac{R_{5}R_{E}}{2R_{5} + R_{E}}}{R_{3} + \frac{2V_{T}}{I_{4}}}.$$
(3.13)

 R_A , R_B , R_C , R_D i R_E su naponom kontrolisane otpornosti koje se baziraju na MOSFET-u u omskom režimu rada, čija je otpornost približno data sa:

$$R_{DS} \approx \frac{1}{\beta \left(V_{OS} - V_{t} \right)}, \tag{3.14}$$

pri čemu je β faktor pojačanja, a V_i napon praga odgovarajućeg MOSFET-a. Varijacija otpornosti naponom kontrolisanog otpornika ostvaruje se promjenom napona gejt-sors V_{GS} MOSFET-a. Sa povećanjem ulazne struje I_{IN} potrebno je smanjivati transimpedansu kola, odnosno smanjivati vrijednost naponom kontrolisane otpornosti. Dakle, pri povećanju ulazne struje I_{IN} , potrebno je povećavati napon gejt-sors V_{GS} MOSFET-a koji konfiguriše naponom kontrolisan otpornik. Kolo prikazano na slici 3.4 obavlja funkciju automatskog postepenog aktiviranja odgovarajućih otpornika, kao i promjenu vrijednosti pojedinih naponom kontrolisanih otpornosti, sa promjenom kontrolne struje I_{GC} . Naponom kontrolisan otpornik R_C konfiguriše MOSFET M_{1C} u omskom režimu rada. Napon V_{REF3} dobijen je korišćenjem *dummy* ulaznog stepena, i približno je jednak jednosmjernom naponu na izlazu ulaznog stepena V_{OUTI} , $V_{REF3} = V_{OUTI}$. Napon na gejtu ovog MOSFET-a je $V_{GIC} = V_{REF3} + V_{I2C} + R_{IC}I_{C2C}$, pri čemu se podrazumijeva da je napon gejt-sors MOSFET-a M_{2C} približno konstantan i jednak naponu praga V_{12C} , $V_{GS2C} = V_{12C}$. Njegov sors je na potencijalu $V_{SIC} = V_{OUTI} = V_{REF3}$, što znači da je $V_{GSIC} - V_{I1C} = R_{IC}I_{C2C} = R_{IC}I_{GC}$, jer je $V_{I1C} = V_{I2C}$. Sa povećanjem kontrolne struje I_{GC} otpornost R_C se

Slika 3.4 Kolo za kontrolu pojačanja transimpedansnog pojačavača [4].

smanjuje (3.14), a samim tim i pojačanje transimpedansnog pojačavača. Kada kontrolna struja I_{GC} postane veća od struje I_X , aktivira se otpornost R_A , realizovana na isti način kao i R_C . Napon na gejtu MOSFET-a M_{1A} koji konfiguriše otpornik R_A je $V_{GIA}=V_{REF3}+V_{t2A}+R_{1A}I_{C2A}$, pri čemu se podrazumijeva da je napon gejt-sors MOSFET-a M_{2A} približno konstantan i jednak naponu praga V_{t2A} , $V_{GS2A}=V_{t2A}$. Njegov sors je na potencijalu $V_{SIA}=V_{OUTI}\approx V_{REF3}$, što znači da je $V_{GSIA}-V_{t1A}=R_{1A}I_{C2A}=R_{1A}(I_{GC}-I_X)$, jer je $V_{t1A}=V_{t2A}$. Dalje povećanje kontrolne struje I_{GC} znači smanjenje otpornosti R_A , a samim tim i smanjenje transimpedanse kola. Strujni izvor I_X određuje trenutak kada je potrebno aktivirati otpornost R_A . Analogno se obavlja kontrola ostalih varijabilnih otpornosti.

Potrebno je uspostaviti određenu korelaciju između kontrolne struje I_{GC} i ulazne struje I_{IN} . Isti autori su, dvije godine kasnije, predložili kolo za automatsku kontrolu pojačanja predstavljenog transimpedansnog pojačavača koje obavlja pomenutu funkciju [5]. Napon V_X sa izlaza *emitter-follower*-a koji čini BJT Q₈, slika 3.1, vodi se na gejt diodno vezanog MOSFET-a M_1 , slika 3.5. Napon sa krajeva kondenzatora C_1 se preko MOSFET-a M_2 (*source-follower*-a) i BJT-a Q_{10} (*emitter-follower*-a), vodi na bazu BJT-a Q_{11} . Bipolarni tranzistori Q_{11} i Q_{12} su identičnih karakteristika, kao i bipolarni tranzistori Q_{13} i Q_{14} . Otpornosti R_9 i R_{10} su jednake, $R_9=R_{10}$. Na osnovu slike 3.5 dobija se da su kolektorske struje bipolarnih tranzistora Q_{11} i Q_{12} :

$$I_{C11} = \frac{\beta_{11}}{1 + \beta_{11}} \left(\frac{I_{10}}{2} + \frac{V_{REF4} - V_{B11}}{2R_9} \right) \approx \frac{I_{10}}{2} + \frac{V_{REF4} - V_{B11}}{2R_9} = I_{11} + \frac{V_{REF4} - V_{B11}}{2R_9},$$
(3.15)

$$I_{C12} = \frac{\beta_{12}}{1 + \beta_{12}} \left(\frac{I_{10}}{2} - \frac{V_{REF4} - V_{B11}}{2R_9} \right) \approx \frac{I_{10}}{2} - \frac{V_{REF4} - V_{B11}}{2R_9} = I_{11} - \frac{V_{REF4} - V_{B11}}{2R_9},$$
(3.16)

gdje je V_{REF4} referentni napon na bazi BJT-a Q₁₂, V_{B11} napon na bazi BJT-a Q₁₁, a odnos struja strujnih izvora I_{10} i I_{11} je $I_{10}=2I_{11}$. Kontrolna struja I_{GC} može se zapisati kao:

$$I_{GC} = I_{C12} - I_{11} = \frac{V_{B11} - V_{REF4}}{2R_9}, \qquad (3.17)$$

Dakle, potrebno je da kolektorska struja I_{C12} bipolarnog tranzistora Q_{12} bude veća od struje koju daje strujni izvor I_{11} , $I_{C12}>I_{11}$. Na osnovu (3.17) zaključuje se da napon V_{REF4} na bazi tranzistora Q_{12} treba da bude manji od napona V_{B11} na bazi tranzistora Q_{11} . Napona V_{B11} na bazi tranzistora Q_{11} može se izraziti kao $V_{B11}=V_X-V_{GS1}+V_{SG2}-V_{BE10}$, gdje je V_{GS1} napon gejt-sors MOSFET-a M_1 , V_{SG2} napon sors-gejt MOSFET-a M_2 i V_{BE10} napon baza-emitor BJT-a Q_{10} . Ovi naponi mogu se podešavati promjenom struja I_7 , I_8 i/ili I_9 . Sada se relacija (3.17) može napisati u sljedećem obliku:

$$I_{GC} = \frac{V_{\chi} + V_{SG2} - V_{GS1} - V_{BE10} - V_{REF4}}{2R_9} \,.$$
(3.18)

Budući da je napon V_X na izlazu *emitter-follower*-a koji čini BJT Q₈ direktno proporcionalan ulaznoj struju I_{IN} , uz pomoć predloženog kola moguće je odabrati za koju vrijednost ulazne struje I_{IN} će se početi sa smanjivanjem transimpedanse kola, ispunjavanjem uslova $I_{GC}>0$.

Transimpedansni pojačavač ima linearnu prenosnu karakteristiku za ulaznu struju I_{IN} manju od granične vrijednosti, dok za veću ulaznu struju, kada je kolo za automatsku kontrolu pojačanja aktivno, daje približno konstantan napon na svom izlazu.

Kompenzaciona kapacitivnost C_F i otpornost R_F ograničavaju frekventni opseg transimpedansnog pojačavača na oko 160 MHz. Osim toga, ulazna kapacitivnost i ulazna otpornost ulaznog stepena transimpedansnog pojačavača, gledano sa strane baze bipolarnog tranzistora Q_1 , slika 3.2, formiraju pol na približno istoj učestanosti. Ukoliko bi se transimpedansni pojačavač koristio za realizaciju optičkog prijemnika, frekventni opseg transimpedansnog pojačavača gotovo ne bi zavisio od kapacitivnosti fotodiode jer ulazna kapacitivnost transimpedansnog pojačavača ima mnogo veću vrijednost od kapacitivnosti fotodiode.

Slika 3.5 Kolo za automatsku kontrolu pojačanja transimpedansnog pojačavača [5].

Prema eksperimentalnim rezultatima prikazanim u [4], maksimalna izmjerena transimpedansa je T_{max} =98 k Ω , dok je minimalna izmjerena transimpedansa T_{min} =40 Ω , što znači da je dinamički opseg transimpedansi T_{max}/T_{min} =2450. Frekventni opseg za maksimalnu transimpedansu T_{max} =98 k Ω iznosi f_{-3dB} =128 MHz, što znači da je maksimalni proizvod transimpedanse i frekventnog opsega (Tf_{-3dB})max= 12.54 T Ω Hz. Spektralna gustina šuma na ulazu je 1.17 pA/vHz za maksimalnu vrijednost transimpedanse. Izmjerena potrošnja za napon napajanja od 5 V je P=110 mW. Maksimalna ulazna struja koju kolo može da prihvati je 3 mA, pri čemu je maksimalna vrijednost diferencijalnog izlaznog napona 120 mV.

Prema eksperimentalnim rezultatima prikazanim u [5], maksimalna izmjerena transimpedansa je T_{max} =120 k Ω , dok je minimalna izmjerena transimpedansa T_{min} =400 Ω , što znači da je dinamički opseg diferencijalnih transimpedansi T_{max}/T_{min} =300. Frekventni opseg za maksimalnu transimpedansu T_{max} =120 k Ω iznosi $f_{.3dB}$ =140 MHz, što znači da je maksimalni proizvod transimpedanse i frekventnog opsega ($Tf_{.3dB}$)_{max}= 16.8 T Ω Hz. Spektralna gustina šuma na ulazu je 1.17 pA/ \sqrt{Hz} za maksimalnu vrijednost transimpedanse. Izmjerena potrošnja za napon napajanja od 5 V je P=110 mW. Maksimalna ulazna struja koju kolo može da prihvati je 4 mA. Izmjereni naponski ofset je 80 mV.

K. Phang i D. A. Johns projektovali su transimpedansni pojačavač sa promjenljivim pojačanjem u 0.35 μ m CMOS tehnologiji, namijenjen za optičke prijemnike sa promjenljivom transimpedansom, kao i kolo za odbijanje ambijentalne svjetlosti [6]. Osnovna električna šema predloženog rješenja prikazana je na slici 3.6. Kolo se sastoji od diferencijalnog transimpedansnog pojačavača sa promjenljivim pojačanjem i kola za odbijanje ambijentalne svjetlosti. S obzirom da se fotodioda optičkog prijemnika vezuje za jedan od ulaza diferencijalnog pojačavača, za drugi ulaz vezan je kondenzator C_{IN} čija je kapacitivnost približno jednaka kapacitivnosti fotodiode, kako bi se ostvarila što bolja simetrija.

Slika 3.6 Transimpedansni pojačavač sa kolom za odbijanje ambijentalne svjetlosti [6].

Kolo za odbijanje ambijentalne svjetlosti čine integrator (pojačavač greške) i MOSFET M_5 . Jednosmjerna komponenta ulazne struje na izlazu diferencijalnog pojačavača izaziva naponski ofset. Pojačavač greške integrali napon ofseta sa izlaza diferencijalnog pojačavača i vodi na gejt MOSFET-a M_5 . MOSFET M_5 se ponaša kao varijabilni strujni ponor, koji uzima jednosmjernu komponentu ulazne struje. Sa povećanjem jednosmjerne komponente ulazne struje, ofset na izlazu diferencijalnog pojačavača će biti veći, a samim tim i napon gejt-sors V_{GS5} MOSFET-a M_5 . Veći napon V_{GS5} znači i veću struju drejna I_{D5} MOSFET-a M_5 . Na ovaj način se približno eliminiše jednosmjerna komponenta struje fotodiode, a samim tim i struja fotodiode koju izaziva ambijentalna svjetlost.

Prenosna karakteristika transimpedansnog pojačavača prikazanog na slici 3.6 približno se može zapisati kao:

$$\frac{v_{out}(s)}{i_m(s)} \approx A_{traph} \frac{s + \omega_{pea}}{s + g_{ms} A_{traph} A_{ea0} \omega_{pea}},$$
(3.19)

pri čemu je A_{tiapb} pojačanje transimpedansnog pojačavača u propusnom opsegu, A_{ea0} jednosmjerno pojačanje pojačavača greške, g_{m5} transkonduktansa MOSFET-a M₅ i ω_{pea} dominantni pol pojačavača greške. Može se uočiti da je učestanost pola $\omega_p = g_{m5}A_{tiapb}A_{ea0}\omega_{pea}$ mnogo veća od učestanosti nule $\omega_n = \omega_{pea} << \omega_p = g_{m5}A_{tiapb}A_{ea0}\omega_{pea}$. Dakle, kolo prikazano na slici 3.6 ponaša se kao propusnik visokih učestanosti sa jednosmjernim pojačanjem $1/g_{m5}A_{ea0}$ i pojačanjem u propusnom opsegu A_{tiapb} . Sa povećanjem jednosmjerne struje fotodiode, pol $\omega_p = g_{m5}A_{tiapb}A_{ea0}\omega_{pea}$ se pomjera ka većim učestanostima, dok se jednosmjerno pojačanje $1/g_{m5}A_{ea0}$ kola smanjuje. To znači da je sistem za odbijanje ambijentalne svetlosti efektniji pri većoj ambijentalnoj svjetlosti, odnosno, da posjeduje svojstvo izvjesne samoregulacije. U situaciji kada je struja koju proizvodi ambijentalna svjetlost mnogo veća od korisnog signala, jednosmjerna struja fotodiode uglavnom potiče od ambijentalne svjetlosti i tada je jednosmjerno pojačanje malo. Naravno, treba voditi računa da učestanost pola ω_p ne bude previše velika, jer bi se na taj način mogao izgubiti i koristan signal.

Osnovna struktura transimpedansnog pojačavača sa promjenljivom transimpedansom prikazana je na slici 3.7. Na osnovu slike može se zapisati:

$$\frac{v_{out}}{i_m} = -\frac{A}{C_{IN}} \frac{1}{s + \frac{A+1}{R_F C_{IN}}},$$
(3.20)

gdje je C_{IN} ekvivalentna kapacitivnost na ulazu naponskog pojačavača koja je dominanto određena kapacitivnošću fotodiode $C_{IN} \approx C_{PD}$, dok je $A = -v_{out}/v_{in}$ naponsko pojačanje pojačavačkog stepena bez povratne sprege. Dakle, transimpedansa optičkog prijemnika može se podešavati odgovarajućim odabirom otpornosti R_F u povratnoj grani. Za male struje fotodiode treba birati veliku vrijednost otpornosti R_F kako bi se poboljšala osjetljivost optičkog prijemnika, dok za

Slika 3.7 Osnovna struktura transimpedansnog pojačavača sa promjenljivom transimpedansom [6].

velike ulazne struje treba odabrati manju vrijednost otpornosti R_F kako kolo ne bi ušlo u zasićenje.

U cilju optimizacije frekventnog opsega optičkog prijemnika i očuvanja stabilnosti, izvršena je detaljnija frekventna analiza naponskog pojačavača. Uzete su u obzir parazitne kapacitivnosti na gejtu C_{TI} i drejnu C_{T2} MOSFET-a M₂, kao i kapacitivnost C_I kondenzatora koji je vezan paralelno otporniku R_I , slika 3.8. Prenosna karakteristika naponskog pojačavača bez povratne sprege može se dobiti na osnovu modela za male signale prikazanog na slici 3.9 i data je izrazom:

$$A(s) = -\frac{v_{out}}{v_{in}}(s) \approx -\frac{g_{m1}C_1}{C_{T1}C_{T2}} \frac{s - \frac{g_{m2}}{C_1}}{s^2 + \frac{g_{m2}C_1}{C_{T1}C_{T2}}s + \frac{g_{m2}}{R_1C_{T1}C_{T2}}}.$$
(3.21)

Slika 3.8 Naponski pojačavač bez povratne sprege u sklopu transimpedansnog pojačavača [6].

Slika 3.9 Model za male signale naponskog pojačavača sa slike 3.8.

Prilikom izvođenja prethodne relacije uzete su u obzir sljedeće aproksimacije: $R_1 << r_{dsi}$, $g_{mi} >> 1/r_{dsi}$ i $g_{mi} >> 1/R_1$, $C_1 << C_{T1}$, $C_1 << C_{T2}$, i=1, 2. Na osnovu (3.21) dobija se da je prirodna učestanost ω_{0V} naponskog pojačavača bez povratne sprege:

$$\omega_{0F} \approx \sqrt{\frac{g_{m2}}{R_1 C_{T1} C_{T2}}},$$
(3.22)

dok je faktor Q_{ν} .

$$Q_{1} \approx \frac{1}{C_{1}} \sqrt{\frac{C_{T1}C_{T2}}{g_{m2}R_{1}}}$$
(3.23)

Uzimajući u obzir da je prenosna karakteristika povratne sprege $\beta(s)$ data sa:

$$\beta(s) = \frac{\frac{1}{sC_{IN}}}{\frac{1}{sC_{IN}} + R_F} = \frac{1}{1 + sR_FC_{IN}},$$
(3.24)

kružno pojačanje naponskog pojačavača sa povratnom spregom $A(s)\beta(s)$ računa se na osnovu (3.21) i (3.24) kao:

$$A(s)\beta(s) \approx -\frac{g_{m1}C_1}{C_{T1}C_{T2}} \frac{s - \frac{g_{m2}}{C_1}}{s^2 + \frac{g_{m2}C_1}{C_{T1}C_{T2}}} s + \frac{g_{m2}}{R_1C_{T1}C_{T2}} \frac{1}{1 + sR_FC_{IN}}.$$
(3.25)

U cilju određivanja frekvencije ω_l na kojoj kružno pojačanje naponskog pojačavača sa povratnom spregom postaje $|A(j\omega_l)\beta(j\omega_l)|=1$, polazi se od pretpostavke da važi: $1/(R_F C_{IN}) << \omega_l << \omega_{DV}, \omega_l << g_{m2}/C_1$. Vodeći računa da je $C_{IN} >> C_{TI}, C_{IN} >> C_{T2}$, dobija se:

$$\omega_{i} \approx \frac{g_{m1}R_{1}}{R_{F}C_{IN}}.$$
(3.26)

Prirodna učestanost $\omega_{0\nu}$ treba da ima mnogo veću vrijednost od učestanosti ω_t , $\omega_{0\nu} \gg \omega_t$, kako bi sistem bio stabilan [35].

Prenosna karakteristika T(s) transimpedansnog pojačavača dobija se na osnovu modela za male signale transimpedansnog pojačavača prikazanog na slici 3.10:

$$T(s) = \frac{v_{out}}{i_{in}} = \frac{g_{n1}R_1C_1}{(C_{T1} + C_{T2} + g_{n2}R_1C_1)C_{IN}}$$

$$\frac{s - \frac{g_{m2}}{C_1}}{s^2 + s \frac{g_{m2}}{C_{T1} + C_{T2} + g_{m2}R_1C_1} + \frac{g_{m1}g_{m2}R_1}{(C_{T1} + C_{T2} + g_{m2}R_1C_1)R_FC_{IN}}}.$$
(3.27)

Na osnovu (3.27) dobija se da je prirodna učestanost ω_{0T} transimpedansnog pojačavača data kao:

$$\omega_{0T} = \sqrt{\frac{g_{m1}g_{m2}R_{1}}{\left(C_{T1} + C_{T2} + g_{m2}R_{1}C_{1}\right)R_{F}C_{IN}}},$$
(3.28)

dok je faktor Q_T :

$$Q_{T} = \sqrt{\frac{\left(C_{T1} + C_{T2} + g_{m2}R_{1}C_{1}\right)g_{m1}R_{1}}{g_{m2}R_{1}C_{1N}}}.$$
(3.29)

Stabilnost transimpedansnog pojačavača može se razmotriti bilo analizom frekvencije ω_i na kojoj kružno pojačanje naponskog pojačavača sa povratnom spregom postaje $|A(j\omega_i)\beta(j\omega_i)|=1$ (3.26), bilo analizom faktora Q_T (3.29) [30]. Da bi se očuvala stabilnost, frekvencija ω_i mora biti konstantna, a faktor Q_T mora biti $Q_T < 0.707$, za sve vrijednosti jednosmjerne transimpedanse $T(s=0)=R_F$. Osim toga, poželjno je da i faktor Q_T bude konstantan, i da se nalazi u opsegu $0.5 < Q_T < 0.707$. Lako je uočiti da promjena jednosmjerne transimpedanse $T(s=0)=R_F$ uzrokuje promjenu frekvencije ω_i , odnosno, faktora Q_T (3.26), (3.29). Da bi stabilnost bila obezbijeđena, otpornost R_I treba da prati promjene otpornosti R_F , kako bi im odnos bio približno konstantan $R_I/R_F \approx const.$, što je u predloženom dizajnu relativno jednostavno postići. Uz to, uslov $R_I/R_F \approx const.$ omogućava konstantnu vrijednost prirodne učestanosti ω_{0T} (frekventnog opsega) transimpedansnog pojačavača (3.28) za različite vrijednosti transimpedanse $T(s=0)=R_F$.

Kondenzator C_I se koristi za frekvencijsku kompenzaciju. Da bi bilo ispunjeno $1/(R_F C_{IN}) << \omega_l << \omega_{01'}, \omega_l << g_{m2'}/C_I$, potrebno je da polovi prenosne karakteristike A(s) (3.21) naponskog pojačavača bez povratne sprege budu konjugovano kompleksni. Samim tim, potrebno je da faktor $Q_{I'}$ naponskog pojačavača bez povratne sprege (3.23) bude $Q_I > 0.5$. Ovo se može

Slika 3.10 Model za male signale transimpedansnog pojačavača [6].

postići pravilnim odabirom kompenzacione kapacitivnosti C_I . Smanjivanjem kapacitivnosti C_I faktor $Q_{I'}$ se povećava. Sa druge strane, smanjivanje kapacitivnosti C_I utiče na smanjivanje faktora Q_T (3.29) čime se povećava stabilnost transimpedansnog pojačavača. Osim toga, smanjivanje kapacitivnosti C_I dovodi do povećanja frekvencije ω_{0T} (3.28), odnosno, frekventnog opsega transimpedansnog pojačavača.

Električna šema optičkog prijemnika sa diferencijalnim transimpedansnim pojačavačem prikazana je na slici 3.11. Za izračunavanje transimpedanse korišćena je pojednostavljena struktura prikazana na slici 3.12, čiji je model za male signale prikazan na slici 3.13. Otpornosti R_{IA} i R_{IB} su međusobno jednake. $R_{IA}=R_{IB}=R_I$, kao i otpornosti R_{FA} i R_{FB} , $R_{FA}=R_{FB}=R_F$. MOSFET-ovi M₁ i M₂ su identičnih karakteristika, kao i MOSFET-ovi M₃ i M₄. S obzirom da kroz MOSFET-ove M₁ i M₂ teku približno iste jednosmjerne struje, $I_{DI}=I_{D2}=I_{I}/2$, kao i kroz MOSFET-ove M₃ i M₄, $I_{D3}=I_{D4}$ ($V_{CS3}=V_{GS4}$), važi da je $g_{mI}=g_{m2}$, $g_{m3}=g_{m4}$, $r_{ds1}=r_{ds2}$ i $r_{ds3}=r_{ds4}$. Zanemarivanjem kapacitivnosti C_{TI} , C_{T2} i C_{I} , dobija se da transimpedansa optičkog prijemnika sa diferencijalnim transimpedansnim pojačavačem iznosi:

$$T(s) = \frac{v_{out}^* - v_{out}^*}{i_{pl}} \approx \frac{2A}{C_{lN}} \frac{1}{s + \frac{A+1}{R_F C_{lN}}} \approx \frac{2g_{ml}R_l}{C_{lN}} \frac{1}{s + \frac{g_{ml}R_l}{R_F C_{lN}}}$$
(3.30)

Prilikom izvođenja prethodne relacije uzete su u obzir sljedeće aproksimacije: $R_1 << r_{dsi}$, $g_{mi} >> 1/r_{dsi}$ i $g_{mi} >> 1/R_1$, $g_{mi} >> 1/R_F$, i=1, 2, 3, 4. Uzimajući u obzir kapacitivnosti C_{TI} , C_{T2} i C_1 , dobija se da transimpedansa optičkog prijemnika sa diferencijalnim transimpedansnim pojačavačem iznosi:

$$T(s) = \frac{v_{out}^* - v_{out}^*}{i_{pd}} = \frac{2A(s)}{C_{IN}} \frac{1}{s + \frac{A(s) + 1}{R_{IF}C_{IN}}},$$
(3.31)

gdje je A(s) prenosna karakteristika naponskog pojačavača bez povratne sprege (3.21). Dakle, uz upotrebu diferencijalnog transimpedansnog pojačavača u sklopu optičkog prijemnika dobija se dva puta veća transimpedansa.

Varijabilne otpornosti $R_{IA}=R_{IB}=R_I$ i $R_{FA}=R_{FB}=R_F$ imaju jednake vrijednosti, $R_I=R_F$, i realizovane su kao naponom kontrolisane, prema slici 3.14. Svaki od parova MOSFET-ova M_{in} i M_{ip} , i=1, 2, 3, u sklopu odgovarajućeg otpornika, predstavlja naponom kontrolisan otpornik koji može imati jednu od dvije vrijednosti otpornosti ili biti isključen (imati beskonačnu otpornost) u zavisnosti od napona na gejtu V_{bni} i V_{bpi} , i=1, 2, 3. S obzirom da naponom kontrolisane otpornike u sklopu optičkog prijemnika R_I i R_F čine po tri para MOSFET-ova koji su paralelno vezani, slika 3.14, oni mogu imati jednu od 27 vrijednosti otpornosti u zavisnosti od kombinacije polarizacionih napona V_{bni} i V_{bpi} , i=1, 2, 3. Dakle, transimpedansa optičkog prijemnika može imati jednu od 27 diskretnih vrijednosti. MOSFET M_{tap} ima ulogu u smanjenju učestanosti pola

Slika 3.11 Diferencijalni transimpedansni pojačavač [6].

Slika 3.12 Pojednostavljena električna šema diferencijalnog transimpedansnog pojačavača [6].

Slika 3.13 Model za male signale kola prikazanog na slici 3.12.

Slika 3.14 Naponom kontrolisan otpornik.

 ω_p koji unosi kolo za redukciju ambijentalne svjetlosti, tako što se na ulaz pojačavača greške veže. umjesto *out* priključka, *tap* priključak. slika 3.14. Ekvivalentna otpornost između priključaka *in* i *tap* je manja od ekvivalentne otpornosti između priključaka *in* i *out*. pa je i učestanost pola ω_p manja.

Prema eksperimentalnim rezultatima prikazanim u [6]. maksimalna izmjerena transimpedansa je T_{max} =19 k Ω , dok je minimalna izmjerena transimpedansa T_{min} =500 Ω . što znači da je dinamički opseg transimpedansi T_{max}/T_{min} =38. Frekventni opseg je približno konstantan za sve transimpedanse i iznosi od $f_{-3dBmin}$ =85 MHz (za T=19 k Ω) do $f_{-3dBmax}$ =103 MHz (za T=8 k Ω). Izmjereni frekventni opseg za maksimalnu transimpedansu je $f_{-3dBmax}$ =85 MHz. što znači da je maksimalni proizvod transimpedanse i frekventnog opsega (Tf_{-3dB})_{max}= 1.615 T Ω Hz. Spektralna gustina šuma na ulazu je 6.7 pA/ \sqrt{Hz} za maksimalnu vrijednost transimpedanse. Izmjerena potrošnja transimpedansnog pojačavača za napon napajanja od 3 V je P=8 mW. Izlazni stepen troši dodatnih 43 mW. Maksimalna ulazna struja koju kolo može da prihvati je 400 μ A. Ukupna površina čipa je 1.44 mm², dok je površina koju zauzima transimpedansni pojačavač 0.04 mm². Dinamički opseg koji se definiše kao odnos maksimalne ulazne struje koju kolo može da prihvati i vrijednosti ukupnog ulaznog strujnog šuma iznosi 77 dB.

K. Kieschnick i *H. Zimmermann* projektovali su optički prijemnik sa varijabilnim pojačanjem u 0.8 μm BiCMOS tehnologiji [7], čija je osnovna električna šema prikazana na slici 3.15. Optički prijemnik sastoji se od integrisane fotodiode i transimpedansnog pojačavača. Transimpedansa optičkog prijemnika iznosi:

$$T = \begin{cases} R_{FA}, \ V_{SW} = 0\\ R_{FA} \parallel R_{FB}, \ V_{SW} = V_{CC} \end{cases}$$
(3.32)

Dakle, transimpedansa optičkog prijemnika može imati jednu od dvije diskretne vrijednosti.

Slika 3.15 Optički prijemnik na bazi prekidačkih tehnika [7].

Ukoliko je prekidač otvoren, $V_{SW}=0$, transimpedansa ima veću vrijednost, $T=R_{FA}$, dok, ukoliko je prekidač zatvoren, $V_{SW}=V_{CC}$, transimpedansa optičkog prijemnika opada, $T=R_{FA}||R_{FB}$. Frekvencijska kompenzacija izvršena je umetanjem kondenzatora paralelno otporniku u granu negativne povratne sprege. Dobija se da je AC transimpedansa optičkog prijemnika T(s) data izrazom:

$$T(s) = \frac{v_{out}}{i_{pd}} \approx \frac{A_0 \omega_h}{C_T + C_F} \frac{1}{s^2 + \frac{R_F (C_T + A_0 C_F) \omega_h + 1}{R_F (C_T + C_F)} s + \frac{A_0 \omega_h}{R_F (C_T + C_F)}},$$
(3.33)

pri čemu je $C_T = C_{PD} + C_{OAI}$, C_{PD} je kapacitivnost fotodiode. dok je C_{OAI} ulazna kapacitivnost operacionog pojačavača. Operacioni pojačavač je modelovan prenosnom karakteristikom koja ima jednosmjerno pojačanje $A_0 >> 1$, i dominantni pol na učestanosti ω_b :

$$A(s) = \frac{A_0}{1 + j\frac{\omega}{\omega_b}}.$$
(3.34)

Ukoliko se uzme u obzir da je $C_{PD} >> C_F$, na osnovu relacije (3.33), dobija se da su prirodna učestanost ω_0 i faktor Q:

$$\omega_0 \approx \sqrt{\frac{A_0 \omega_b}{R_F C_T}},\tag{3.35}$$

$$Q \approx \frac{\sqrt{\frac{R_F C_T}{A_0 \omega_h}}}{\frac{1}{A_0 \omega_h} + R_F \left(\frac{C_T}{A_0} + C_F\right)}.$$
(3.36)

Kompenzacionu kapacitivnost C_F treba birati tako da faktor Q bude $Q < 1/\sqrt{2}$, kako amplitudnofrekventna karakteristika ne bi sadržala maksimum (*gain-peaking*), odnosno, kako ne bi došlo do prekoračenja (*overshool*) i oscilacija u vremenskom odzivu na pobudu odskočnog tipa [30]:

$$Q \approx \frac{\sqrt{\frac{R_F C_T}{A_0 \omega_h}}}{\frac{1}{A_0 \omega_h} + R_F \left(\frac{C_T}{A_0} + C_F\right)} < \frac{1}{\sqrt{2}} \Rightarrow$$
$$\Rightarrow C_F > \sqrt{\frac{2C_T}{A_0 \omega_h R_F}} - \frac{C_T}{A_0} - \frac{1}{A_0 \omega_h R_F} \approx \sqrt{\frac{2C_T}{A_0 \omega_h R_F}} - \frac{C_T}{A_0} . \tag{3.37}$$

Medutim, sistem će biti stabilan i ukoliko se za kompenzacionu kapacitivnost C_F izabere i nešto manja vrijednost. Na taj način, uz prihvatanje malog maksimuma (pika) u amplitudnofrekventnoj karakteristici, može se dobiti veći frekventni opseg. Jednačina (3.33) se može zapisati kao:

$$T(j\omega) = \frac{R_{\mu}}{1 + \left| -\frac{\omega^2}{\omega_0^2} + j\frac{\omega}{\omega_0 Q} \right|} e^{j\varphi}, \qquad (3.38)$$

gdje je φ :

$$\varphi = \operatorname{arctg}\left(-\frac{\omega_{\varphi}}{\omega Q}\right). \tag{3.39}$$

Analizom relacije (3.38) dolazi se do zaključka da posmatrani sistem sa povratnom spregom postaje nestabilan ako je ispunjen uslov:

$$-\frac{\omega^2}{\omega_0^2} + j\frac{\omega}{\omega_0 Q} \bigg| e^{j\varphi} = -1.$$
(3.40)

Sistem će ostati stabilan ako se prethodni kriterijum ublaži uvođenjem sljedećih uslova:

$$\left|-\frac{\omega^2}{\omega_0^2} + j\frac{\omega}{\omega_0 Q}\right| = 1,$$
(3.41)

$$arctg\left(-\frac{\omega_0}{\omega Q}\right) = 135^\circ,$$
 (3.42)

iz čega se dobija da je $Q = \sqrt[4]{2}$. Sada se kompenzaciona kapacitivnost C_F može birati tako da faktor Q bude $Q < \sqrt[4]{2}$:

$$Q \approx \frac{\sqrt{\frac{R_{\mu}C_{T}}{A_{0}\omega_{h}}}}{\frac{1}{A_{0}\omega_{h}} + R_{\mu}\left(\frac{C_{T}}{A_{0}} + C_{\mu}\right)} < \sqrt[4]{2} \Rightarrow$$
$$\Rightarrow C_{\mu} > \sqrt{\frac{C_{T}}{\sqrt{2}A_{0}\omega_{h}R_{\mu}}} - \frac{C_{T}}{A_{0}} - \frac{1}{A_{0}\omega_{h}R_{\mu}} \approx \sqrt{\frac{C_{T}}{\sqrt{2}A_{0}\omega_{h}R_{\mu}}} - \frac{C_{T}}{A_{0}}.$$
(3.43)

Vrijednost kompenzacione kapacitivnost C_F trebalo bi da bude u opsegu vrijednosti definisanih jednačinama (3.37) i (3.43):

$$\sqrt{\frac{2C_T}{A_0\omega_b R_F}} - \frac{C_T}{A_0} > C_F > \sqrt{\frac{C_T}{\sqrt{2}A_0\omega_b R_F}} - \frac{C_T}{A_0}.$$
(3.44)

Dakle, kapacitivnost kompenzacionog kondenzatora C_F je funkcija ne samo kapacitivnosti fotodiode C_{PD} , nego i otpornosti R_F tj. transimpedanse optičkog prijemnika, i mora se pažljivo izračunati. Za različite transimpedanse potrebno je koristiti kompenzacione kondenzatore različitih kapacitivnosti. Iz tog razloga, optički prijemnik prikazan u [7] ima samo dvije transimpedanse.

Detaljna električna šema transimpedansnog pojačavača (sa fotodiodom) u okviru optičkog prijemnika [7] data je na slici 3.16. Jednostavnom analizom, ukoliko se zanemare bazne struje, dobija se da je izlazni napon V_{OUT} približno definisan izrazom:

$$V_{OUT} \approx V_{REF} + V_{BE1} + R_F I_{PD} - V_{BE3} \approx V_{REF} + T I_{PD}, \qquad (3.45)$$

gdje je $R_F = T(s=0)$ (3.33).

Slika 3.16 Električna šema transimpedansnog pojačavača sa fotodiodom [7].

Napon V_{REG} koji se vodi na gejt MOSFET-a M₁ ima ulogu u regulaciji naponskog ofseta optičkog prijemnika. Kontrola ofseta bazirana je na upotrebi *dummy* strukture, slika 3.17. *Dummy* pojačavač OA₂ sa otpornicima u grani negativne povratne sprege identičan je operacionom pojačavaču OA₁ sa otpornicima R_{FA} i R_{FB} u sklopu transimpedansnog pojačavača. Ukoliko je napon na izlazu *dummy* pojačavača OA₂ manji od referentnog napona V_{REF} , napon V_{REG} na izlazu operacionog pojačavača OA₃ takođe opada. Napon sors-gejt V_{SGI} MOSFET-a M₁ raste, raste napon na emitoru tranzistora Q₂, pa i napon na izlazu *dummy* pojačavača OA₂ takođe raste. Kada je uspostavljeno stacionarno stanje, naponi na invertujućem i neinvertujućem ulazu operacionog pojačavača OA₃ su jednaki. Dobra uparenost operacionih pojačavača OA₁ i OA₂, i odgovarajućih otpornika u granama povratne sprege, kao i operacioni pojačavač OA₃ koji ima mali ofset, mogu obezbijediti dovoljno mali ofset optičkog prijemnika.

Pojednostavljeni model za male signale transimpedansnog pojačavača prikazan je na slici 3.18. Izostavljen je bipolarni tranzistor Q₃ u konfiguraciji *emitter follower*-a, čiji pol nema uticaja na prenosnu karakteristiku. MOSFET M₁ je ekvivalentiran otpornikom R_{MI} . Podrazumijevajući da je $r_m >> R_{MI}$, $r_{cei} >> R_{MI}$, $g_{mi}r_m >> 1$, $g_{mi}r_{cel} >> 1$, $g_{mi}R_F >> 1$, i=1, 2, dobija se da je prenosna karakteristika transimpedansnog pojačavača, za opseg frekvencija do oko 100 MHz, data izrazom:

$$\frac{v_{quu}}{i_{pd}} \approx \frac{g_{m1}R_{M1}R_{F}(C_{\mu2}+C_{\pi2})-R_{F}C_{F}}{(1+g_{m1}R_{M1})g_{m2}R_{F}C_{F}+g_{m1}R_{M1}C_{\pi2}+(g_{m1}+g_{m2})R_{M1}C_{\mu2}+(1+g_{m2}R_{F})C_{Q}} \cdot \frac{g_{m1}g_{m2}R_{M1}R_{F}}{g_{m1}R_{M1}R_{F}(C_{\mu2}+C_{\pi2})-R_{F}C_{F}} + s}{\frac{(1+g_{m1}R_{M1})g_{m2}}{(1+g_{m1}R_{M1})g_{m2}} + s},$$
(3.46)

što znači da je f-3dB:

$$f_{-3dB} \approx \frac{1}{2\pi \left[R_{F}C_{F} + \frac{g_{m1}R_{M1}}{g_{m2}\left(1 + g_{m1}R_{M1}\right)}C_{\pi2} + \frac{\left(g_{m1} + g_{m2}\right)R_{M1}}{g_{m2}\left(1 + g_{m1}R_{M1}\right)}C_{\mu2} + \frac{1 + g_{m2}R_{F}}{g_{m2}\left(1 + g_{m1}R_{M1}\right)}C_{\varrho} \right]} \approx \frac{1}{2\pi \left[R_{F}C_{F} + \frac{g_{m1}R_{M1}}{g_{m2}\left(1 + g_{m1}R_{M1}\right)}C_{\pi2} + \frac{1 + g_{m2}R_{F}}{g_{m2}\left(1 + g_{m1}R_{M1}\right)}C_{\varrho} \right]},$$
(3.47)

pri čemu je:

$$C_Q = C_{PD} + C_{\pi 1} + (1 + g_{m1} R_{M1}) C_{\mu 1}.$$
(3.48)

Frekventni opseg transimpedansnog pojačavača [7] zavisi od kapacitivnosti kompenzacionog

Slika 3.17 Šematski prikaz regulacije ofseta pomoću dummy strukture [7].

Slika 3.18 Model za male signale transimpedansnog pojačavača [7].

kondenzatora C_F i otpornosti R_F tj. transimpedanse optičkog prijemnika, ali i od položaja radne tačke preko transkonduktansi g_{ml} i g_{m2} bipolarnih tranzistora Q₁ i Q₂, kao i od njihovih parazitnih kapacitivnosti, $C_{\mu l}$, $C_{\pi l}$ i $C_{\pi 2}$. Veoma značajan uticaj na frekventni opseg transimpedansnog pojačavača [7] ima i kapacitivnosti fotodiode C_{PD} .

Fotodioda optičkog prijemnika je integrisana. Njena parazitna kapacitivnost iznosi C_{PD} =112 fF za površinu od 3000 μ m² i napon inverzne polarizacije 3 V. Frekventni opseg fotodiode pri crvenoj svjetlosti (λ =638 nm) je f_{PD-3dB} =82.4 MHz, dok je za infracrvenu svjetlost (λ =780 nm) frekventni opseg fotodiode f_{PD-3dB} =54.6 MHz [7].

Autori su predložili dva rješenja koja se razlikuju samo po vrijednosti otpornosti R_{FA} i R_{FB} . U prvom slučaju $R_{FA}=100 \text{ k}\Omega$ i $R_{FB}=50 \text{ k}\Omega$, dakle maksimalna transimpedansa optičkog prijemnika je $T_{max}=100 \text{ k}\Omega$, dok je minimalna transimpedansa $T_{min}=33.33 \text{ k}\Omega$, što znači da je dinamički opseg transimpedansi $T_{max}/T_{min}=3$. Prema eksperimentalnim rezultatima prikazanim u [7] frekventni opseg za veću transimpedansu iznosi $f_{-3dB}=60.2$ MHz, dok za manju transimpedansu iznosi $f_{.3dB}$ =61.6 MHz. Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je ($Tf_{.3dB}$)_{max}=6.02 TΩHz. Maksimalna vrijednost naponskog ofseta je V_{OFF} =17.8 mV, pri manjoj transimpedansi. Maksimalna osjetljivost iznosi S_{max} =43.3 mV/ μ W. Snaga izlaznog šuma za veću transimpedansu je -84.3 dBm, dok je za manju transimpedansu -84.6 dBm. U drugom slučaju R_{FA} =150 kΩ i R_{FB} =70 kΩ, dakle maksimalna transimpedansa optičkog prijemnika je T_{max} =150 kΩ, dok je minimalna transimpedansa T_{min} =47.73 kΩ, što znači da je dinamički opseg transimpedansi T_{max}/T_{min} =3.14. Maksimalna vrijednost naponskog ofseta je V_{OFF} =-12.7 mV, pri manjoj transimpedansi. Maksimalna osjetljivost iznosi S_{max} =60.4 mV/ μ W. Snaga izlaznog šuma za veću transimpedansu je -80.5 dBm, dok je za manju transimpedansu -82.6 dBm. Izmjerena disipacija snage za napon napajanja od 5 V je P=8.33 mW. Mjerenja su vršena za crvenu svjetlost (λ =638 nm). Površina čipa optičkog prijemnika sa šest kanala je 1333 x 1595 μ m².

3.2 Optički prijemnici sa strujnim pojačavačima sa promjenljivim pojačanjem

T. Ruotsalainen, P. Palojärvi i *J. Kostamovaara* projektovali su transimpedansni pojačavač sa promjenljivom transimpedansom sa simetričnim izlazima, baziran na naponom kontrolisanom strujnom pojačavaču u 0.8 μm BiCMOS tehnologiji [12], čija je električna šema prikazana na slici 3.19. Primjena ovog transimpedansnog pojačavača je kod optičkih prijemnika koji se koriste u radarima baziranim na laserskim *time of flight* mjerenjima. Transimpedansni pojačavač se sastoji od strujnog pojačavača sa promjenljivim pojačanjem i konvertora struje u napon. Prenosna karakteristika strujnog pojačavača sa promjenljivim pojačanjem koji se bazira na translinearnoj petlji [36], slika 3.20, data je izrazom:

$$\frac{I_{OUT1} - I_{OUT2}}{I_{IN}} = -2 \frac{1 - e^{\frac{V_C - V_{REF}}{V_T}}}{1 + e^{\frac{V_C - V_{REF}}{V_T}}} = 2th\left(\frac{V_C - V_{REF}}{2V_T}\right),$$
(3.49)

pri čemu je I_{IN} ulazna struja, V_C kontrolni napon, V_{REF} referentni napon, dok je V_T termički napon. Na osnovu prethodne relacije može se zaključiti da se sa promjenom kontrolnog napona V_C mijenja pojačanje kola. Najbolja osjetljivost postiže se u opsegu kontrolnog napona $V_{REF}-2V_T < V_C < V_{REF}+2V_T$. Ukoliko je kontrolni napon van ovih granica, kolo ulazi u neku vrstu zasićenja. Naime, kada je $V_C > V_{REF}+2V_T$, provodi par tranzistora Q₁ i Q₄, dok tranzistori Q₂ i Q₃ ne provode i pojačanje kola iznosi $(I_{OUTI}-I_{OUT2})/I_{IN}\approx 2$. Osjetljivost strujnog pojačanja od kontrolnog napona V_C nije previše velika, s obzirom na prirodu tangens-hiperbolnog zakona. Prenosna karakteristika konvertora struje u napon, slika 3.21, data je izrazom:

$$\frac{V_{OUT1} - V_{OUT2}}{I_{OUT1} - I_{OUT2}} = \frac{AR_F}{A+1} \approx R_F.$$
(3.50)

Slika 3.19 Transimpedansni pojačavač sa promjenljivim pojačanjem [12].

Slika 3.20 Strujni pojačavač sa promjenljivim pojačanjem [12].

Slika 3.21 Konvertor struje u napon u sklopu transimpedansnog pojačavača [12].

Otpornosti R_{FA} i R_{FB} imaju jednake vrijednosti, $R_{FA}=R_{FB}=R_F$. Na osnovu relacija (3.49) i (3.50) dobija se da je transimpedansa transimpedansnog pojačavača:

$$T = \frac{V_{OUT1} - V_{OUT2}}{I_{IN}} \approx -2R_F \frac{1 - e^{\frac{V_C - V_{REF}}{V_T}}}{1 + e^{\frac{V_C - V_{REF}}{V_T}}} = 2R_F th\left(\frac{V_C - V_{REF}}{V_T}\right).$$
(3.51)

Dakle, promjenom kontrolnog napona V_C može se mijenjati transimpedansa transimpedansnog pojačavača i njena maksimalna vrijednost iznosi $T_{max}=2R_F$.

Model za male signale strujnog pojačavača sa promjenljivim pojačanjem u sklopu transimpedansnog pojačavača prikazan je na slici 3.22. Prenosna karakteristika strujnog pojačavača data je izrazom:

$$\frac{i_{mut}}{i_m} = th\left(\frac{V_C - V_{REF}}{2V_T}\right) \frac{1}{1 + \frac{2s}{g_{m1} + g_{m2}}} \left(\frac{C_{GCIN}}{2} + C_{IN}\right),$$
(3.52)

pri čemu su g_{m1} i g_{m2} transkonduktanse bipolarnih tranzistora Q_1 i Q_2 , C_{IN} je kapacitivnost strujnog izvora koja je približno jednaka kapacitivnosti fotodiode C_{PD} , dok je C_{GCIN} ulazna parazitna kapacitivnost kola za kontrolu pojačanja. Prilikom izvođenja prethodne relacije podrazumijevano je $g_{m1} >> 1/r_{ce1}$, $g_{m1} >> 1/r_m$, $g_{m1} + g_{m2} >> 1/R_E$, i=1, 2, 3, 4. Pol koji unosi strujni pojačavač sa promjenljivim pojačanjem je na učestanosti $\omega_{GCP} = (g_{m1} + g_{m2})/(C_{GCIN} + 2C_{IN})$. U predloženoj realizaciji fotodioda nije integrisana, pa je suma kapacitivnosti $C_{GCIN} + 2C_{IN}$ reda nekoliko pF, dok je suma transkonduktansi $g_{m1} + g_{m2} \approx l_{EE}/V_T$ reda nekoliko desetina mS, što znači da je ovaj pol na učestanosti reda GHz i ne utiče na frekventni opseg strujnog pojačavača, a samim tim i transimpedansnog pojačavača. Dakle, uticaj kapacitivnosti fotodiode C_{PD} na frekventni opseg optičkog prijemnika je zanemarljiv, podrazumijevajući da je ova kapacitivnost dovoljno velika. Osim toga, podrazumijevajući da kontrolni napon V_C uzima samo vrijednosti iz opsega koji je od interesa za promjenu pojačanja strujnog pojačavača ($V_{REF}-2V_T < V_C < V_{REF}+2V_T$), frekvencija pola ω_{GCP} ne zavisi od kontrolnog napona V_C , odnosno, ne mijenja se sa promjenom transimpedanse optičkog prijemnika.

Slika 3.22 Model za male signale strujnog pojačavača sa promjenljivim pojačanjem u sklopu transimpedansnog pojačavača [12].

Model za male signale konvertora struje u napon u sklopu transimpedansnog pojačavača prikazan je na slici 3.23. Kompenzacione kapacitivnosti C_{FA} i C_{FB} imaju jednake vrijednosti, $C_{FA}=C_{FB}=C_F$. Kapacitivnost C_{CVCIN} predstavlja ulaznu kapacitivnost konvertora struje u napon. Na osnovu modela za male signale, dobija se da je prenosna karakteristika konvertora struje u napon data izrazom:

$$\frac{v_{out1} - v_{out2}}{i_{out}} \approx \frac{2A_0\omega_h}{C_F + C_{CVCIN}} \frac{1}{s^2 + \frac{A_0R_FC_F\omega_h + 1}{R_F(C_F + C_{CVCIN})}s + \frac{A_0\omega_h}{R_F(C_F + C_{CVCIN})}}.$$
(3.53)

Pojačavač u sklopu konvertora struje u napon modelovan je prenosnom karakteristikom $A(s)=(v_{out}^+ - v_{out}^-)/(v_m^+ - v_m^-)$ koja ima dominantni pol na učestanosti ω_b i jednosmjerno pojačanje A_0 . Prirodna učestanost ω_{CVC0} i faktor Q_{CVC} dati su relacijama:

$$\omega_{CVC0} \approx \sqrt{\frac{A_0 \omega_h}{R_F \left(C_F + C_{CVCIN}\right)}}, \qquad (3.54)$$

$$Q_{CVC} \approx \frac{\sqrt{A_0 R_F (C_F + C_{CVCIN}) \omega_h}}{A_0 R_F C_F \omega_h + 1}.$$
(3.55)

Prirodna učestanost ω_{CVC0} , kao i faktor Q_{CVC} zavise od vrijednosti kompenzacione kapacitivnosti C_F . Za određenu vrijednost otpornosti R_F , potrebno je odabrati kapacitivnost C_F tako da važi $Q_{CVC} < 1/\sqrt{2}$ da bi sistem bio stabilan. Odgovarajućim odabirom kompenzacione kapacitivnosti C_F , frekventni opseg konvertora struje u napon se ograničava na konstantnu vrijednost. Dakle, frekventni opseg transimpedansnog pojačavača je konstantan za sve transimpedanse i zavisi od frekventnih karakteristika konvertora struje u napon.

Prema eksperimentalnim rezultatima prikazanim u [12], maksimalna izmjerena transimpedansa je T_{max} =9.3 k Ω , dok je minimalna izmjerena transimpedansa T_{mun} =441 Ω , što

Slika 3.23 Model za male signale konvertora struje u napon u sklopu transimpedansnog pojačavača [12].

znači da je dinamički opseg transimpedansi $T_{max}/T_{min}=21.1$. Frekventni opseg je približno konstantan za sve transimpedanse i iznosi od $f_{-3dBmin}=244$ MHz (za T=9.3 k Ω) do $f_{-3dBmax}=241$ MHz (za $T=441 \Omega$). Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je (Tf_{-3dB})_{max}= 2.3 T Ω Hz. Spektralna gustina šuma na ulazu je 6.8 pA/ \sqrt{Hz} za maksimalnu vrijednost transimpedanse. Izmjerena potrošnja strujnog pojačavača sa promjenljivim pojačanjem je P=37.5 mW. Da bi se postigao dovoljno nizak nivo ulaznog šuma potreban je dodatni izvor za napajanje $V_{EE}=-10$ V, slika 3.19, što predstavlja značajan nedostatak prikazanog dizajna.

G. W. de Jong, J. R. M. Bergervoet, J. H. A. Brekelmans i *J. F. P. van Mil* projektovali su optički prijemnik sa varijabilnim pojačanjem u 0.6 μm BiCMOS tehnologiji [14], čija je osnovna električna šema prikazana na slici 3.24.

Optički prijemnik čine integrisana fotodioda i transimpedansni pojačavač. Transimpedansni pojačavač sastoji se od strujnog pojačavača sa promjenljivim pojačanjem i konvertora struje u napon. Strujni pojačavač formiran je pomoću operacionih pojačavača OA₁, OA₂, OA₃, i OA₄, i strujnih ogledala Q₁-Q₂, Q₃-Q₄, Q₅-Q₆ i Q₇-Q₈, sa odgovarajućim faktorima pojačanja N_1 , N_2 , N_3 , i N_4 , i negativnim povratnim spregama. Konvertor struje u napon sastoji se od referentnog napona V_{REF2} i otpornika R. Na osnovu slike 3.24 jasno je da se napon na izlazu optičkog prijemnika može zapisati kao:

$$V_{OUT} = V_{REF2} + N_1 N_2 N_3 N_4 R I_{PD}.$$
(3.56)

Dakle, transimpedansa optičkog prijemnika data je izrazom:

$$T = \frac{V_{OUT} - V_{REF2}}{I_{PD}} = N_1 N_2 N_3 N_4 R.$$
(3.57)

Pojačanje strujnog pojačavača je varijabilno i zavisi od faktora pojačanja pojedinih strujnih pojačavača N_1 , N_2 , N_3 i N_4 , pa je samim tim i transimpedansa optičkog prijemnika varijabilna.

Slika 3.24 Osnovna struktura optičkog prijemnika [14].

Slika 3.25 Kontrola pojačanja optičkog prijemnika [14].

Pojačanje je programabilno i ima jednu od vrijednosti iz skupa vrijednosti 2', pri čemu je $i=\overline{1,11}$, kako bi se na izlazu dobio napon konstantne amplitude od oko 1 V, za različite vrijednosti struje fotodiode. Kontrola pojačanja optičkog prijemnika obavlja se kako je prikazano na slici 3.25.

Fotodioda optičkog prijemnika je integrisana. Njena parazitna kapacitivnost iznosi C_{PD} =250 fF, a frekventni opseg f_{PD-3dB} =450 MHz [14]. Prema eksperimentalnim rezultatima prikazanim u [14], maksimalna izmjerena transimpedansa je T_{max} =265 k Ω , dok je minimalna izmjerena transimpedansa T_{min} =259 Ω , što znači da je dinamički opseg transimpedansi T_{max}/T_{min} =1024. Frekventni opseg iznosi f_{-3dB} =250 MHz za transimpedansu T=265 k Ω . Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je (Tf_{-3dB})_{max}=66.25 T Ω Hz. Spektralna gustina šuma je 4.6 nV/ \sqrt{Hz} . Izmjerena potrošnja je P=21.3 mW pri naponu napajanja od 5 V. Naponski ofset ima veoma malu vrijednost i iznosi V_{OFF} =117 μ V.

J. Sturm, M. Leifhelm, H. Schatzmayr, S. Groi β i H. Zimmermann projektovali su optički prijemnik sa varijabilnim pojačanjem u 0.5 µm BiCMOS tehnologiji [15], čija je osnovna struktura prikazana na slici 3.26. Optički prijemnik sastoji se od integrisane PIN fotodiode i transimpedansnog pojačavača. Transimpedansni pojačavač čine dva strujna pojačavača CA₁ i CA₂ i klasični konvertor struje u napon CVC. Napon na izlazu V_{OUT} može se zapisati kao:

$$V_{OUT} = V_{REF} - A_{CA1} A_{CA2} R_F I_{PD}, ag{3.58}$$

što znači da je transimpedansa optičkog prijemnika:

$$T = \frac{V_{OUT} - V_{REF}}{I_{PD}} = -A_{CA1}A_{CA2}R_F,$$
(3.59)

pri čemu su A_{CA1} i A_{CA2} pojačanja strujnih pojačavača CA₁ i CA₂. Strujno pojačanje se kontroliše preko serijskog I²C interfejsa. Promjenom strujnog pojačanja, može se mijenjati transimpedansa optičkog prijemnika. Kompenzacija ofseta obavlja se upotrebom *replica* kola koje čini još jedan par strujnih pojačavača CA₁ i CA₂. Izlazna struja *replica* kola I_{CAR} oduzima se od struje na izlazu strujnog pojačavača I_{CA} pomoću preciznog strujnog ogledala. Rezultantna struja se vodi na ulaz

Slika 3.26 Blok šema optičkog prijemnika [15].

klasičnog konvertora struje u napon CVC sa varijabilnom otpornošću R_F u grani negativne povratne sprege. Referentni napon V_{REF} se do transimpedansnog pojačavača dovodi sa pina, preko bafera, i iznosi od 2 V do 2.4 V. Napon sa izlaza transimpedansnog pojačavača se preko bafera vodi na izlaz optičkog prijemnika. Pojednostavljena električna šema strujnog pojačavača u okviru optičkog prijemnika [15], prikazana je na slici 3.27. Bipolarni tranzistori Q₁ i Q₂ su identičnih karakteristika. Strujno pojačanje A_{CA} dato je izrazom:

$$A_{CA} = \frac{I_{OUT}}{I_{IN}} = e^{\frac{V_{C}}{V_{T}}},$$
(3.60)

pri čemu je V_C kontrolni napon, dok je V_T termički napon. Sada se transimpedansa optičkog prijemnika može zapisati kao:

$$T = \frac{V_{OUT} - V_{REF}}{I_{PD}} = -A_{CA1}A_{CA2}R_F = -R_F e^{\frac{V_{C1} + V_{C2}}{V_T}},$$
(3.61)

gdje su V_{Cl} i V_{C2} kontrolni naponi redno vezanih strujnih pojačavača CA₁ i CA₂. S obzirom na prirodu eksponencijalnog zakona, malom promjenom kontrolnog napona V_{Cl} i/ili V_{C2} može se ostvariti velika promjena pojačanja strujnog pojačavača, a samim tim i transimpedanse optičkog prijemnika.

Model za male signale strujnog pojačavača prikazan je na slici 3.28. Podrazumijevajući da je $g_{mQi}r_{mi} >>1$, $g_{mQi}r_{cei} >>1$, $g_{mMl}r_{dsl} >>1$, i=1, 2, dobija se da je prenosna karakteristika strujnog pojačavača data izrazom:

$$\frac{i_{out}}{i_{in}} \approx \frac{A_{CA}g_{mQ1}g_{mA1}}{C_{T1}C_{T2}} \frac{1}{\frac{g_{mQ1}g_{mA1}}{C_{T1}C_{T2}} + \frac{(A_{CA}+1)g_{mQ1}}{C_{T2}}s + s^{2}},$$
(3.62)

Slika 3.27 Pojednostavljena električna šema strujnog pojačavača u okviru optičkog prijemnika [15].

pri čemu je g_{mMI} transkonduktansa MOSFET-a M₁, g_{mQI} transkonduktansa bipolarnog tranzistora Q₁, A_{CA} jednosmjerno pojačanje strujnog pojačavača (3.60), C_{TI} je ulazna kapacitivnost strujnog pojačavača i C_{T2} ekvivalentna kapacitivnost na drejnu MOSFET-a M₁. Budući da je $I_{OUT}=A_{CA}I_{IN}$, važi da je transkonduktansa bipolarnog tranzistora Q₂ A_{CA} puta veća od transkonduktanse bipolarnog tranzistora Q₁, $g_{mQ2}=I_{OUT}/V_T=A_{CA}I_{IN}/V_T=A_{CA}g_{mQI}$. Na osnovu prenosne karakteristike strujnog pojačavača, dobija se da su prirodna učestanost ω_{0CA} i faktor Q_{CA} :

$$\omega_{0CA} = \sqrt{\frac{g_{mQ1}g_{mAI1}}{C_{T1}C_{T2}}} = \sqrt{\frac{\sqrt{2\beta}}{V_T C_{T1}C_{T2}}} \left[\left(1 + A_{CA} \right) I_{IN} \right]^{1/4} \sqrt{I_{IN}} , \qquad (3.63)$$

$$Q_{CA} = \frac{1}{A_{CA} + 1} \sqrt{\frac{g_{mM1}C_{T2}}{g_{mQ1}C_{T1}}} = \frac{1}{\left[\left(1 + A_{CA}\right)I_{IN}\right]^{1/4} \sqrt{1 + A_{CA}}} \sqrt{\sqrt{2\beta} \frac{C_{T2}}{C_{T1}}V_{T}} .$$
(3.64)

Na osnovu relacije (3.58) može se zaključiti da je $A_{CA}I_{IN}=(V_{OUT}-V_{REF})/R_F=const$. Za strujno pojačanje $A_{CA}>>1$ frekventni opseg strujnog pojačavača će biti veći ukoliko jednosmjerna ulazna struja I_{IN} ima veću vrijednost. što odgovara manjim transimpedansama. U ovom slučaju faktor Q_{CA} se povećava jer se strujno pojačanje A_{CA} smanjuje (3.64). Dakle, stabilnost strujnog pojačavača, a samim tim i optičkog prijemnika, je manja za veće ulazne struje I_{IN} (manje transimpedanse T).

Slika 3.28 Model za male signale strujnog pojačavača [15].

Podrazumijevajući da je faktor $Q_{CA} < 0.5$, polovi prenosne karakteristike strujnog pojačavača mogu se aproksimirati na sljedeći način:

$$\omega_{p1CA} \approx \omega_{0CA} Q_{CA} = \frac{g_{mM1}}{(A_{CA} + 1)C_{T1}},$$
(3.65)

$$\omega_{p^{2CA}} \approx \frac{\omega_{0CA}}{Q_{CA}} = \frac{(A_{CA} + 1)g_{mQ1}}{C_{T2}}.$$
(3.66)

Da bi se dobio veći frekventni opseg potrebno je da frekvencija dominantnog pola $f_{p1CA} = \omega_{p1CA}/(2\pi)$ ima što veću vrijednost. To se može ostvariti povećanjem transkonduktanse g_{mM1} MOSFET-a M₁, odnosno povećanjem vrijednosti jednosmjernih struja. Povećanjem strujnog pojačanja A_{CA} dolazi do razdvajanja polova. Frekvencija pola koji unosi klasični konvertor struje u napon CVC zavisi od otpornosti R_F . S obzirom da se transimpedansa optičkog prijemnika podešava pomoću strujnih pojačavača, za R_F se može uzeti takva vrijednost da pol koji formira konvertor struje u napon CVC dodatno ne ograničava frekventni opseg.

Kako bi se proširio frekventni opseg strujnog pojačavača uveden je jednosmjerni strujni izvor I_1 , slika 3.29. Međutim, sa povećanjem jednosmjernih struja, povećava se i šum bipolarnih tranzistora Q_1 i Q_2 . Iz tog razloga uvedeno je CSE (*Capacitive Speed Enhancement*) kolo, slika 3.29, koje čine pojačavač i kondenzator C_{FF} . Na osnovu modela za male signale, slika 3.30, dobija se da je prenosna karakteristika strujnog pojačavača sa CSE kolom data izrazom:

$$\frac{i_{out}}{i_{im}} \approx \frac{Ag_{mM1}C_{FF}}{C_{T1}C_{T2}} \frac{\frac{A_{CA}g_{mQ1}}{AC_{FF}} + s}{\frac{g_{mQ1}g_{mM1}}{C_{T1}C_{T2}} + \frac{(A_{CA}+1)g_{mQ1}}{C_{T2}}s + s^{2}}$$
(3.67)

CSE kolo povećava frekventni opseg strujnog pojačavača za velike transimpedanse optičkog prijemnika, a ujedno redukuje šum.

Slika 3.29 Strujni pojačavač u okviru optičkog prijemnika [15].

Slika 3.30 Model za male signale strujnog pojačavača sa CSE kolom [15].

Prema eksperimentalnim rezultatima prikazanim u [15], osjetljivost integrisane PIN fotodiode je R=0.35 A/W za svjetlost talasne dužine $\lambda=780$ nm, R=0.4 A/W za svjetlost talasne dužine $\lambda=660$ nm i R=0.25 A/W za svjetlost talasne dužine $\lambda=410$ nm, dok je frekventni opseg preko 1 GHz za napon inverzne polarizacije od 2.5 V. Mjerenja su vršena za svjetlost talasne dužine $\lambda=650$ nm. Maksimalna transimpedansa optičkog prijemnika je $T_{max}=270$ k Ω , dok je minimalna transimpedansa $T_{min}=130$ Ω , što znači da je dinamički opseg transimpedansi $T_{max}/T_{min}=2078$. Frekventni opseg iznosi $f_{.3dB}=260$ MHz za maksimalnu transimpedansu $T_{max}=270$ k Ω . Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je $(Tf_{.3dB})_{max}=70.2$ T Ω Hz. Maksimalna osjetljivost optičkog prijemnika iznosi $S_{max}=100$ mV/ μ W. Izmjerena potrošnja za napon napajanja od 5 V je P=37.5 mW.

C. Seidl, H. Schatzmayr, J. Sturm, S. Groiss, M. Leifhelm, D. Spitzer, H. Schaunig i H. Zimmermann projektovali su optički prijemnik sa varijabilnim pojačanjem u 0.5 μ m BiCMOS tehnologiji [16], čija je osnovna struktura prikazana na slici 3.31. Rješenje je veoma slično onom predloženom u [15]. Optički prijemnik sastoji se od integrisane PIN fotodiode PD, strujnog pojačavača CA, atenuatora AT i klasičnog konvertora struje u napon CVC. Napon na izlazu V_{OUT} može se zapisati kao:

$$V_{OUT} = V_{REF} - A_{CA} A_{AT} R_F I_{PD} , \qquad (3.68)$$

što znači da je DC transimpedansa optičkog prijemnika:

$$T = \frac{V_{OUT} - V_{REF}}{I_{PD}} = -A_{CA}A_{AT}R_{F}, \qquad (3.69)$$

pri čemu je A_{CA} pojačanje strujnog pojačavača CA, dok je A_{AT} slabljenje atenuatora AT, R_F je otpornost u grani negativne povratne sprege konvertora struje u napon CVC. Promjenom strujnog pojačanja A_{CA} , odnosno, promjenom slabljenja A_{AT} , može se mijenjati transimpedansa optičkog prijemnika. Kompenzacija ofseta obavlja se upotrebom *replica* kola koje čini još jedan par strujnog pojačavača CA i atenuatora AT. Izlazna struja *replica* kola I_{REF-AT} oduzima se od

Slika 3.31 Blok šema optičkog prijemnika [16].

struje na izlazu atenuatora I_{OUT-AT} pomoću strujnog ogledala. Rezultantna struja se vodi na ulaz konvertora struje u napon CVC sa fiksnom otpornošću R_F u grani negativne povratne sprege. Napon sa izlaza konvertora struje u napon CVC se preko bafera sa izlaznim stepenom u klasi AB vodi na izlaz optičkog prijemnika. Na slici 3.32 je prikazana električna šema strujnog pojačavača i njegove *replica* strukture za redukciju ofseta. Prenosna karakteristika strujnog pojačavača data je izrazom:

$$A_{CA} = \frac{I_{OUT-CA}}{I_{IN}} = e^{\frac{V_{C1}}{V_T}},$$
(3.70)

gdje je V_{Cl} kontrolni napon, dok je V_T termički napon. Strujni pojačavač je veoma sličan strujnom pojačavaču u okviru optičkog prijemnika sa varijabilnom transimpedansom datom u [15]. U analizi u [15] zaključeno je da se frekventni opseg strujnog pojačavača može proširiti

Slika 3.32 Električna šema strujnog pojačavača i njegovog replica kola [16].

povećanjem jednosmjernih struja u kolu. Iz tog razloga uveden je jednosmjerni strujni izvor I_1 . Međutim, sa povećanjem struje I_1 povećava se i vrijednost šuma koji unose bipolarni tranzistori Q_2 i Q_3 . Pomoću dodatnog jednosmjernog strujnog izvora I_2 vezanog za kolektor bipolarnog tranzistora Q_1 , povećana je transkonduktansa bipolarnog tranzistora Q_1 , a samim tim je proširen i frekventni opseg strujnog pojačavača. I ova realizacija sadrži CSE kolo koje čine kondenzator C_2 i bafer, koje povećava frekventni opseg strujnog pojačavača za velike transimpedanse optičkog prijemnika, i ujedno redukuje šum. *Replica* kolo ima istu strukturu kao i strujni pojačavač CA, osim što je izostavljeno CSE kolo. Frekventni opseg je ograničen umetanjem kondenzatora C_4 između baze i kolektora bipolarnog tranzistora Q_4 , kako bi se smanjio šum. Izlazna struja strujnog pojačavača I_{OUT-CA} vodi se na ulaz strujnog atenuatora, dok se izlazna struja *replica* kola I_{REF-CA} vodi na ulaz *replica* strukture atenuatora. Električna šema strujnog atenuatora, njegove *replica* strukture za redukciju ofseta, kao i kola za oduzimanje struja prikazana je na slici 3.33. Bipolarni tranzistori Q_7 , Q_8 , Q_9 i Q_{10} imaju isto strujno pojačanje $\beta_7 = \beta_8 = \beta_9 = \beta_{10} = \beta$. Slabljenje atenuatora A_{4T} dato je izrazom:

$$A_{AT} = \frac{I_{OUT-AT}}{I_{OUT-CA}} = \frac{1}{\left(1 + \frac{1}{\beta}\right) \left(1 + e^{\frac{V_{CA}}{V_T}}\right)}.$$
(3.71)

Sada se na osnovu (3.69), (3.70) i (3.71) transimpedansa optičkog prijemnika T može zapisati kao:

$$T = -R_F \frac{e^{\frac{V_{c1}}{V_T}}}{\left(1 + \frac{1}{\beta}\right) \left(1 + e^{\frac{V_{c2}}{V_T}}\right)}.$$
(3.72)

Slika 3.33 Električna šema strujnog oslabljivača i njegove replica strukture sa kolom za oduzimanje struja [16].

Slika 3.34 Konvertor struje u napon CVC [16].

Na ulaz konvertora struje u napon CVC, vodi se razlika struje sa izlaza atenuatora I_{OUT-AT} i struje sa izlaza njegove *replica* strukture I_{REF-AT} , $I_{CVC}=I_{OUT-AT}$ - I_{REF-AT} .

Strujno pojačanje dobijeno pomoću predloženog strujnog pojačavača i atenuatora je programabilno i iznosi od 0.04 do 13.8. Konvertor struje u napon CVC korišćen u okviru optičkog prijemnika prikazan je na slici 3.34. Otpornost R_F ima konstantnu vrijednost, R_F =35 k Ω , C_F je kompenzaciona kapacitivnost. Pol koji unosi ovo kolo ne utiče na frekventni opseg optičkog prijemnika, jer je ekvivalentna kapacitivnost na neinvertujućem ulazu operacionog pojačavača u sklopu konvertora struje u napon CVC dovoljno mala.

Optički prijemnik je optimizovan za izlazno opterećenje od 10 pF||10 k Ω . Prema eksperimentalnim rezultatima prikazanim u [16], osjetljivost integrisane PIN fotodiode je R=0.36 A/W za svjetlost talasne dužine $\lambda=780$ nm, R=0.4 A/W za svjetlost talasne dužine $\lambda=660$ nm i R=0.25 A/W za svjetlost talasne dužine $\lambda=405$ nm. Mjerenja su vršena za svjetlost talasne dužine $\lambda=660$ nm. Maksimalna transimpedansa optičkog prijemnika je $T_{max}=465$ k Ω , dok je minimalna transimpedansa $T_{min}=1.35$ k Ω , što znači da je dinamički opseg transimpedansi $T_{max}/T_{min}=345$. Frekventni opseg iznosi $f_{.3dB}=145$ MHz za maksimalnu transimpedansu $T_{max}=465$ k Ω . Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je $(Tf_{.3dB})_{max}=67.9$ T Ω Hz. Maksimalna osjetljivost optičkog prijemnika iznosi $S_{max}=186$ mV/ μ W. Ulazna struja šuma iznosi 65 nA za frekventni opseg od 145 MHz. Maksimalna vrijednost naponskog ofseta je 11.6 mV. Izmjerena potrošnja za napon napajanja od 5 V je P=20 mW. Površina čipa optičkog prijemnika sa osam kanala je 4 mm².

3.3 Sistemi sa naponom kontrolisanim otpornicima koji koriste kombinaciju strujnog i naponskog procesiranja

Sistemi sa kombinacijom strujnog prenosnika, naponom kontrolisanog otpornika i naponskog pojačavača sa fiksnim pojačanjem

N. Tadić i *H. Zimmermann* projektovali su optički prijemnik sa varijabilnim pojačanjem u 0.6 μm BiCMOS tehnologiji [17]-[20], čija je blok šema prikazana na slici 3.35. Predloženi pristup predstavlja kombinaciju strujnog i naponskog procesiranja. Optički prijemnik se sastoji

Slika 3.35 Blok šema optičkog prijemnika [17].

od integrisane fotodiode i transimpedansnog pojačavača. Transimpedansni pojačavač se sastoji od strujnog prenosnika prve generacije (CCI), naponom kontrolisanog otpornika R_{VCR} i neinvertujućeg naponskog pojačavača. Za strujni prenosnik prve generacije CCI pozitivnog tipa važe sljedeće relacije:

$$I_{y} = I_{x}, \qquad (3.73)$$

$$V_x = V_y, \tag{3.74}$$

$$I_z = I_x, \tag{3.75}$$

pri čemu su I_x , I_y , I_z , V_x , V_y ukupni signali koji predstavljaju sumu odgovarajućih jednosmjernih i naizmjeničnih struja odnosno napona, $I_x=I_x+i_x$, $I_y=I_Y+i_y$, $I_z=I_z+i_z$, $V_x=V_x+v_x$ i $V_y=V_Y+v_y$. Nesavršenosti realnog strujnog prenosnika izražene preko parazitnih otpornosti i kapacitivnosti modeluju se kao na slici 3.35 [31]-[38]. R_X je ekvivalentna serijska otpornost na X priključku, R_Y i R_z su ekvivalentne ulazne otpornosti Y i Z priključaka, dok su C_X , C_Y i C_z ulazne kapacitivnosti odgovarajućih priključaka. Uzimajući u obzir odgovarajuće parazitne otpornosti i kapacitivnosti, analiza za male signale realnog strujnog prenosnika prve generacije, slike 3.36 i 3.37, vodi do sljedećih relacija:

$$i_{y} = \left(\frac{1}{Z_{x}} - \frac{1}{R_{y} \parallel C_{y}}\right) v_{y} + \frac{1}{j\omega Z_{x} C_{x}} i_{x},$$
(3.76)

$$v_{x} = \frac{1}{j\omega Z_{x}C_{x}}v_{y} - (R_{x} \parallel C_{x})i_{x}, \qquad (3.77)$$

$$i_{z} = \frac{1}{Z_{x}}v_{y} + \frac{1}{j\omega Z_{x}C_{x}}i_{x} - \frac{1}{R_{z} \parallel C_{z}}v_{z},$$
(3.78)

3 Pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom

gdje je $Z_X = R_X + 1/(j \omega C_X)$. Ukoliko se operacioni pojačavač modeluje prenosnom karakteristikom koja ima dominantni pol ω_b i jednosmjerno pojačanje A_0 , i uzimajući u obzir da je $A_0 >> 1 + R_4/R_3$, jednosmjerna transimpedansa optičkog prijemnika može se izraziti na sljedeći način:

$$T = \frac{V_{OUT} - V_{REF}}{I_{PD}} = \left(1 + \frac{R_4}{R_3}\right) \frac{R_2 R_{VCR}}{R_2 + R_{VCR}} \approx \left(1 + \frac{R_4}{R_3}\right) R_{VCR},$$
(3.79)

pri čemu je V_{OUT} jednosmjerni napon na izlazu, V_{REF} je referentni napon koji služi za inverznu polarizaciju fotodiode, dok je I_{PD} jednosmjerna struja fotodiode. AC transimpedansa optičkog prijemnika T(s) data je izrazom:

$$T(s) = \frac{v_{out}}{i_{pd}} = \frac{\left(1 + \frac{R_4}{R_3}\right) \frac{R_z R_{\nu CR}}{R_z + R_{\nu CR}}}{\left(1 + \frac{s}{\omega_{pi}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \left(1 + \frac{s}{\omega_{p3}}\right)} \approx \frac{\left(1 + \frac{R_4}{R_3}\right) R_{\nu CR}}{\left(1 + \frac{s}{\omega_{p3}}\right) \left(1 + \frac{s}{\omega_{p3}}\right)}.$$
(3.80)

Polovi transimpedanse $T(s) \omega_{p1}, \omega_{p2}$ i ω_{p3} su realni i različiti:

$$\omega_{P^{1}} = \frac{1}{\frac{R_{Z}R_{VCR}}{R_{Z} + R_{VCR}}C_{ZT}}} \approx \frac{1}{R_{VCR}C_{ZT}},$$
(3.81)

$$\omega_{p2} = \frac{A_0 \omega_b}{1 + \frac{R_4}{R_3}},$$
(3.82)

$$\omega_{p3} = \frac{1}{R_X C_{XT}},$$
(3.83)

gdje je $C_{ZT}=C_Z+C_{OA}+C_{VCR}$ ukupna kapacitivnost na Z priključku strujnog prenosnika, C_{OA} je ulazna kapacitivnost operacionog pojačavača, C_{VCR} je parazitna kapacitivnost naponom kontrolisanog otpornika, $C_{XT}=C_X+C_{PD}$ je ukupna kapacitivnost na X priključku strujnog prenosnika, dok je C_{PD} kapacitivnost fotodiode. Parazitna otpornost R_Z je kod predloženog strujnog prenosnika reda M Ω , dok je maksimalna vrijednost naponom kontrolisane otpornosti reda desetina k Ω , što znači da se može smatrati da je $R_Z \|R_{VCR} \sim R_{VCR}$.

Frekvencija prvog pola ω_{pl} je varijabilna i zavisi od ekvivalentne otpornosti R_{VCR} , parazitne kapacitivnosti C_Z na Z priključku strujnog prenosnika, ulazne parazitne kapacitivnosti C_{OA} operacionog pojačavača i parazitne kapacitivnosti C_{VCR} naponom kontrolisanog otpornika. Sa povećanjem otpornosti R_{VCR} , frekvencija pola se smanjuje i obratno. Frekvencija drugog pola ω_{p2} zavisi od proizvoda jednosmjernog pojačanja i frekvencije dominantnog pola operacionog pojačavača $A_0 \omega_b$, kao i od pojačanja naponskog pojačavača $1+R_4/R_3$. Ukoliko je pojačanje

Slika 3.36 Električna šema strujnog prenosnika prve generacije [20].

Slika 3.37 Pojednostavljeni model za male signale strujnog prenosnika prve generacije [20].

naponskog pojačavača veće, frekvencija drugog pola ω_{p2} je manja i obratno. Frekvencija trećeg pola ω_{p3} zavisi od parazitne otpornosti R_X i parazitne kapacitivnosti C_X na X priključku strujnog prenosnika, kao i od parazitne kapacitivnosti fotodiode C_{PD} . Za dovoljno malu ulaznu otpornost R_X strujnog prenosnika na X priključku reda desetina oma i za vrijednost kapacitivnosti C_{XT} reda pF, frekvencija trećeg pola ω_{p3} postaje dovoljno velika da ne utiče na frekventni opseg optičkog prijemnika. Budući da su polovi realni i različiti, u frekventnom odzivu nema maksimuma, pa nema problema sa stabilnošću optičkog prijemnika.

Dakle, promjenom otpornosti naponom kontrolisanog otpornika R_{VCR} i/ili promjenom pojačanja naponskog pojačavača $1+R_4/R_3$ mijenja se transimpedansa optičkog prijemnika. Povećanjem transimpedanse, frekventni opseg optičkog prijemnika postaje manji. Pažljivim dizajnom strujnog prenosnika, frekventni opseg optičkog prijemnika može se učiniti gotovo nezavisnim od kapacitivnosti fotodiode C_{PD} . Nestabilnost sistema može biti uzrokovana samo
prisustvom dodatnih polova koje unosi operacioni pojačavač u sklopu naponskog pojačavača, ali ne i dominantnim polom operacionog pojačavača ω_b .

Dvo-izlazno strujno ogledalo u sklopu strujnog prenosnika prve generacije, slika 3.36, čine MOSFET-ovi M₃-M₈. U cilju boljeg uparivanja struja, odnosno, radi postizanja veće izlazne otpornosti, korišćena je kaskodna struktura. Zanemarujući bazne struje bipolarnih tranzistora Q₁ i Q₂, dobija se da su struje I_x , I_y i I_z međusobno jednake, $I_y=I_z=I_x$. Slijedi da su naponi baza-emitor bipolarnih tranzistora Q₁ i Q₂ takođe jednaki, $V_{be1}=V_{be2}$, što znači da je napon V_x na X priključku uvijek jednak naponu V_y na Y priključku, bez obzira na vrijednost ulazne struje I_x . Zbog jednostavnije analize, u okviru modela za male signale prikazanog na slici 3.37, umjesto kaskodnog, korišćeno je jednostavno strujno ogledalo. Analizom modela za male signale strujnog prenosnika, dobija se izraz za ulaznu otpornost R_x strujnog prenosnika prve generacije:

$$R_{X} = \frac{g_{m2}g_{m3} - g_{m1}g_{m4}}{g_{m1}g_{m2}g_{m4}r_{cc1} + (g_{m2} - g_{m1})(g_{m2} + g_{m4})}r_{cc1}.$$
(3.84)

Prethodna relacija izvedena je pod pretpostavkom da je $\beta_i = g_{mi}r_m \gg 1$, $g_{mi}r_{cei} \gg 1$, $i \in \{1, 2\}$ i $g_{mj}r_{dsj} \gg 1, j \in \{3, 4\}$. Ukoliko se pretpostavi da su bipolarni tranzistori Q_1 i Q_2 savršeno upareni, kao i MOSFET-ovi M₃ i M₄, i ukoliko se zanemare bazne struje bipolarnih tranzistora Q_1 i Q_2 , transkonduktanse g_{ml} i g_{m2} su međusobno jednake, $g_{ml} = g_{m2}$, kao i transkonduktanse g_{m3} i g_{m3} , $g_{m3} = g_{m4}$. Dakle, u idealnom slučaju ulazna otpornost R_X strujnog prenosnika prve generacije je $R_X = 0 \ \Omega$. U realnim okolnostima, strujna pojačanja β_1 i β_2 imaju konačne vrijednosti, bipolarni tranzistori i MOSFET-ovi ne mogu biti savršeno upareni, pa će otpornost R_X imati vrijednost veću od nule, ali ipak manju od nekoliko desetina oma. Ulazna kapacitivnost C_X je data izrazom:

$$C_{\chi} = \frac{C_{\pi 1} \left(C_{e_2} + \frac{C_{\mu 1} C_{e_1}}{C_{\mu 1} + C_{e_1}} \right)}{C_{\pi 1} + C_{e_2} + \frac{C_{\mu 1} C_{e_1}}{C_{\mu 1} + C_{e_1}}} \approx \frac{C_{\pi 1} \left(C_{\pi 2} + C_{e_2} + C_{db4} + C_{\mu 1} \right)}{C_{\pi 1} + C_{\pi 2} + C_{e_2} + C_{db4} + C_{\mu 1}},$$
(3.85)

gdje je $C_{cl}=C_{gb3}+C_{gb4}+C_{gb5}+C_{gs3}+C_{gs4}+C_{gs5}+C_{db3}+C_{cs1}$, dok je $C_{c2}=C_{\pi 2}+C_{cs2}+C_{db4}$. Kapacitivnosti gejt-drejn C_{gd4} i C_{gd5} MOSFET-ova u zasićenju M₄ i M₅ su zanemarene u prethodnoj analizi zbog njihovih veoma malih vrijednosti.

Male vrijednosti ulazne otpornosti R_X i ulazne kapacitivnosti C_X strujnog prenosnika čine da pol ω_{p3} ne ograničava frekventni opseg optičkog prijemnika, odnosno, čine frekventni opseg optičkog prijemnika nezavisnim od kapacitivnosti fotodiode C_{PD} .

Principijelna šema *floating* naponom kontrolisanog otpornika [20] u okviru optičkog prijemnika data je na slici 3.38a). Ekvivalentna otpornost R_{VCR} je:

$$R_{\nu CR} = R_{DS1} = \frac{V_{ds1}}{I_{d1}} = \frac{1}{\beta_1 (V_{C1} - V_{t1})},$$
(3.86)

3 Pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom

gdje je $\beta_I = \mu_n C'_{OX} W_I/L_I$ faktor pojačanja MOSFET-a M₁, μ_n pokretljivost elektrona, C'_{OX} kapacitivnost gejt-oksid po jedinici površine, W_I širina kanala, L_I dužina kanala, V_{II} napon praga MOSFET-a M₁, dok je V_{CI} kontrolni napon. Kontrolni napon V_{CI} je realizovan kao strujom kontrolisan naponski izvor, kako je prikazano na slici 3.38b). Promjenom kontrolne struje I_C mijenja se napon sors-gejt V_{SG2} MOSFET-a M₂, što odgovara promjeni kontrolnog napona. Dakle, promjenom kontrolne struje I_C , mijenja se ekvivalentna otpornost R_{VCR} . Parazitna kapacitivnost C_{VCR} je dominantno određena kapacitivnošću C_{dbI} MOSFET-a M₁, $C_{VCR} \sim C_{dbI}$. Oblast linearnog rada naponom kontrolisanog otpornika dobija se iz uslova da je MOSFET M₁ u omskom režimu rada:

$$V_{C1\min} = V_{l1} + \frac{R_2}{R_1 + R_2} V_{ds1} < V_{C1} < V_{DD} - V_{lC\min} - \frac{R_1}{R_1 + R_2} V_{ds1} - V_{REF} = V_{C1\max}, \qquad (3.87)$$

pri čemu je V_{ICmin} minimalan pad napona na strujnom izvoru I_C pri kojem on regularno obavlja svoju funkciju. Na osnovu opsega kontrolnog napona V_{CI} u okviru koga naponom kontrolisan otpornik ima linearnu prenosnu karakteristiku, dobija se da je opseg otpornosti naponom kontrolisanog otpornika:

$$R_{VCR\min} = \frac{1}{\beta_1 \left(V_{DD} - V_{IC\min} - \frac{R_1}{R_1 + R_2} V_{ds1} - V_{REF} - V_{I1} \right)} < R_{VCR} < \frac{R_1 + R_2}{R_2} \frac{1}{\beta_1 V_{ds1}} = R_{VCR\max} . (3.88)$$

Dinamički opseg otpornosti naponom kontrolisanog otpornika je:

$$\frac{R_{VCR\,\text{max}}}{R_{VCR\,\text{min}}} = \frac{R_1 + R_2}{R_2} \frac{V_{DD} - V_{IC\,\text{min}} - V_{REF} - V_{I1}}{V_{du1}} - \frac{R_1}{R_2}.$$
(3.89)

Sa povećanjem napona V_{dsl} , dinamički opseg otpornosti naponom kontrolisanog otpornika opada. Takođe, za veće vrijednosti referentnog napona V_{REF} , dinamički opseg otpornosti

Slika 3.38 Floating naponom kontrolisan otpornik [20]: a) osnovni koncept, b) električna šema gdje je kontrolni napon V_{Cl} realizovan kao strujom kontrolisan naponski izvor.

naponom kontrolisanog otpornika je manji. Dakle, napon V_{dsI} treba da bude što manji kako bi dinamički opseg otpornosti naponom kontrolisanog otpornika, a samim tim i dinamički opseg transimpedansi optičkog prijemnika, bio što veći. Da bi se na izlazu optičkog prijemnika dobio napon čija je maksimalna varijacija V_{outmax} - V_{outmin} =1 V, uz uslov da je dinamički opseg otpornosti naponom kontrolisanog otpornika R_{VCRmax}/R_{VCRmin} dovoljno veliki, napon sa krajeva naponom kontrolisanog otpornika vodi se na ulaz naponskog pojačavača.

Električna šema naponskog pojačavača i izlaznog stepena u klasi AB prikazana je na slici 3.39. Ulazni stepen operacionog pojačavača predstavlja triplet koji čine bipolarni tranzistori Q₅, Q₆ i Q₇ koje polariše MOSFET M₂₁ i polarizacioni napon V_{BI} . Na ovaj način se osim pojačanja napona $V_z = V_{REF} + R_{VCR}I_{pd}$, dobija i jednakost napona V_{b5} i V_{b6} , $V_{b6} = V_{b5} = V_z$, što je potrebno za realizaciju naponom kontrolisanog otpornika, slika 3.38.

Uvođenjem naponskog pojačavača dobija se veći dinamički opseg otpornosti naponom kontrolisanog otpornika, dok varijacija izlaznog napona V_{outmax} - V_{outmin} koja odgovara maksimalnoj varijaciji ulazne struje I_{pdmax} - I_{pdmin} postaje dovoljno velika (oko 1 V). Zbog malog pada napona na naponom kontrolisanom otporniku njegova linearnost, kao i linearnost transimpedansnog pojačavača, je veoma dobra.

Zbog boljih frekventnih karakteristika *npn* bipolarnih tranzistora u odnosu na *pnp* bipolarne tranzistore ili MOSFET-ove, izlazni stepen u klasi AB sastoji se samo od *npn* bipolarnih tranzistora, slika 3.39. Ključni dio izlaznog stepena predstavljaju bipolarni tranzistori Q_{15} - Q_{18} . MOSFET M₃₀, polarisan naponom V_{B3} predstavlja jednostavni strujni izvor koji obezbjeđuje konstantnu sumu napona baza-emitor bipolarnih tranzistora Q_{15} i Q_{17} , $V_{BE15}+V_{BE17}=const$.

Slika 3.39 Električna šema naponskog pojačavača i izlaznog stepena u klasi AB [20].

Suma napona baza-emitor bipolarnih tranzistora Q_{16} i Q_{18} je takođe konstantna i jednaka sumi napona baza-emitor bipolarnih tranzistora Q_{15} i Q_{17} , $V_{BE15}+V_{BE17}=V_{BE16}+V_{BE18}=const$. Bipolarni tranzistor Q_{14} polariše tranzistore Q_{15} i Q_{16} , dok su tranzistori Q_{17} i Q_{18} diodno povezani. Za vrijeme *push* faze, aktivan je bipolarni tranzistor Q_{16} , dok je Q_{18} zakočen, zbog male vrijednosti napona baza-emitor $V_{BE18}=V_{BE15}+V_{BE17}-V_{BE16}$. Za vrijeme *pull* faze, aktivan je bipolarni tranzistor Q_{18} , dok je Q_{16} zakočen, zbog male vrijednosti napona baza-emitor $V_{BE16}=V_{BE15}+V_{BE17}-V_{BE18}$. MOSFET-ovi M_{28} i M_{29} predstavljaju polarizaciono kolo za bipolarni tranzistor Q_{19} koji preuzima struju potrošača za vrijeme *pull* faze, kao i struju koju daje strujni izvor koji čini MOSFET M_{30} . U cilju proširenja frekventnog opsega uveden je jedinični pojačavač u okviru izlaznog stepena, koga čine bipolarni tranzistori Q_{20} i Q_{21} i MOSFET-ovi M_{31} -M₃₅, slika 3.39.

Osnovni uzrok naponskog ofseta optičkog prijemnika je konačna vrijednost strujnog pojačanja β_5 bipolarnog tranzistora Q_5 , u okviru naponskog pojačavača, slika 3.40. Na osnovu slike 3.40, napon V_Z , kada fotodioda nije osvijetljena, iznosi:

$$V_{Z} = V_{REF} + R_{VCR} \left(\Delta I_{Z} - I_{B5} \right), \tag{3.90}$$

gdje je ΔI_Z izlazna struja na priključku Z strujnog prenosnika, nastala kao posljedica nesavršenosti strujnog prenosnika, kada je struja na ulazu $I_X=I_{PD}=0$ A, dok je I_{BS} bazna struja bipolarnog tranzistora Q₅. Napon na izlazu optičkog prijemnika kada fotodioda nije osvijetljena iznosi:

$$V_{OUT} = V_{REF} + \left(1 + \frac{R_4}{R_3}\right) R_{VCR} \left(\Delta I_2 - I_{B5}\right) = V_{REF} + V_{OFF}.$$
(3.91)

Dakle, naponski ofset optičkog prijemnika VOFF iznosi:

$$V_{OFF} = \left(1 + \frac{R_4}{R_3}\right) R_{VCR} \left(\Delta I_2 - I_{B5}\right). \tag{3.92}$$

Za velike otpornosti naponom kontrolisanog otpornika R_{VCR} , naponski ofset može imati veoma velike vrijednosti. Iz tog razloga uveden je metod za eliminaciju naponskog ofseta ilustrovan slikom 3.41. Po uvođenju varijabilnog strujnog izvora I_{CANC} , napon na izlazu optičkog prijemnika kada fotodioda nije osvijetljena iznosi:

$$V_{OUT} = V_{REF} + \left(1 + \frac{R_4}{R_3}\right) R_{FCR} \left(\Delta I_2 + I_{CANC} - I_{BS}\right) = V_{REF} + V_{OFF} , \qquad (3.93)$$

pa je naponski ofset VOFF:

$$V_{OFF} = \left(1 + \frac{R_4}{R_3}\right) R_{VCR} \left(\Delta I_Z + I_{CANC} - I_{BS}\right).$$
(3.94)

Slika 3.40 Osnovni uzrok naponskog ofseta optičkog prijemnika [20].

Slika 3.41 Eliminacija naponskog ofseta upotrebom varijabilnog strujnog izvora ICANC [20].

Naponski ofset biće kompenzovan ukoliko važi:

$$I_{CANC} = I_{B5} - \Delta I_Z \,. \tag{3.95}$$

Strujni izvor I_{CANC} realizovan je kao naponom kontrolisan strujni izvor, slika 3.42. Čine ga bipolarni tranzistori Q_{12} i Q_{13} , otpornik R_7 i naponom kontrolisan strujni izvor koji čine MOSFET-ovi M_{22} - M_{27} , bipolarni tranzistori Q_{10} i Q_{11} , kontrolni napon V_{C3} i otpornik R_6 . Struja koju daje naponom kontrolisan strujni izvor I_{CANC} jednaka je kolektorskoj struji bipolarnog tranzistora Q_{13} , $I_{CANC}=I_{C13}$ i iznosi:

Slika 3.42 Električna šema naponom kontrolisanog strujnog izvora koji služi za eliminaciju ofseta [20].

Kompletna električna šema optičkog prijemnika data je na slici 3.43. Kontrolnu struju I_C u okviru naponom kontrolisanog otpornika daje naponom kontrolisan strujni izvor koji se sastoji od naponskog izvora V_{C2} , otpornika R_5 i strujnog prenosnika prve generacije koji čine MOSFET-ovi M₉-M₁₄ i bipolarni tranzistori Q₃ i Q₄. Ekvivalentna otpornost naponom kontrolisanog otpornika R_{VCR} data je izrazom:

$$R_{VCR} = \frac{1}{\beta_1 \left(\sqrt{\frac{2V_{C2}}{\beta_2 R_5}} - V_{i_2} - V_{i_1} \right)},$$
(3.97)

gdje je $\beta_2 = \mu_p C'_{OX} W_2/L_2$ faktor pojačanja MOSFET-a M₂, μ_p je pokretljivost šupljina, C'_{OX} je kapacitivnost gejt-oksid po jedinici površine, W_2 je širina kanala, L_2 je dužina kanala, dok je V_{12} napon praga MOSFET-a M₂.

Slika 3.43 Električna šema optičkog prijemnika [20].

Prema eksperimentalnim rezultatima prikazanim u [20], osjetljivost integrisane PIN fotodiode je R=0.51 A/W za svjetlost talasne dužine $\lambda=660$ nm. Mjerenja su vršena za svjetlost talasne dužine $\lambda=660$ nm. Maksimalna transimpedansa optičkog prijemnika je $T_{max}=589.6$ k Ω , dok je minimalna transimpedansa $T_{min}=7.4$ k Ω , što znači da je dinamički opseg transimpedansi $T_{max}/T_{min}=79.7$. Frekventni opseg $f_{.3dB}$ optičkog prijemnika kreće se od 12.7 MHz (za transimpednsu $T=T_{max}$) do 205.5 MHz (za transimpednsu T=9.4 k Ω). Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je $(Tf_{.3dB})_{max}=7.49$ T Ω Hz. Maksimalna osjetljivost optičkog prijemnika iznosi $S_{max}=274.7$ mV/ μ W, dok je minimalna osjetljivost optičkog prijemnika $S_{min}=3.3$ mV/ μ W, što znači da je dinamički opseg osjetljivosti $S_{max}/S_{mm}=83.2$. Maksimalna vrijednost naponskog ofseta je -0.56 mV. Greška linearnosti je manja od 2.92 %. Maksimalna izmjerena potrošnja za napon napajanja od 5 V je P=4.7 mW. Aktivna površina čipa optičkog prijemnika je 330 x 190 μ m².

Prema eksperimentalnim rezultatima prikazanim u [17], osjetljivost integrisane PIN fotodiode je R=0.51 A/W za svjetlost talasne dužine $\lambda=660$ nm. Mjerenja su vršena za svjetlost talasne dužine $\lambda=660$ nm. Maksimalna transimpedansa optičkog prijemnika je $T_{max}=1.454$ MΩ, dok je minimalna transimpedansa $T_{min}=22.2$ kΩ, što znači da je dinamički opseg transimpedansi $T_{max}/T_{min}=65.5$. Frekventni opseg $f_{.3dB}$ optičkog prijemnika kreće se od 8.1 MHz (za transimpednsu $T=T_{max}$) do 189 MHz (za transimpednsu $T=T_{min}$). Maksimalna vrijednost proizvoda transimpedanse i frekventnog opsega je $(Tf_{-3dB})_{max}=11.77$ TΩHz. Maksimalna osjetljivost optičkog prijemnika iznosi $S_{max}=890$ mV/µW, dok je minimalna osjetljivost optičkog prijemnika $S_{min}=11.3$ mV/µW, što znači da je dinamički opseg osjetljivosti $S_{max}/S_{min}=78.8$. Snaga izlaznog šuma kreće se od -77.8 dBm (za transimpedansu $T=T_{min}$) do -67.4 dBm (za transimpedansu T=299.7 kΩ), za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz . Maksimalna vrijednost naponskog ofseta je 0.53 mV. Greška linearnosti je manja od 3.1 %. Izmjerena maksimalna potrošnja za napon napajanja od 5 V je P=3.2 mW. Aktivna površina čipa optičkog prijemnika je 330 µm x 190 µm.

Sistemi sa kombinacijom strujnog prenosnika, naponom kontrolisanog otpornika i naponskog pojačavača sa promjenljivim pojačanjeni

N. Tadić, A. Marchlewski i H. Zimmermann projektovali su optički prijemnik sa varijabilnim pojačanjem u 0.6 μ m BiCMOS tehnologiji [21]-[23], čija je blok šema prikazana na slici 3.44. Ovaj optički prijemnik predstavlja unaprijeđenje rješenja predstavljenog u [20]. Sastoji se od integrisane fotodiode i transimpedansnog pojačavača. Transimpedansni pojačavač čine strujni prenosnik prve generacije (CCI), strujni izvori I_{PI} i I_{P2} , naponom kontrolisan otpornik R_{VCRI} i dva neinvertujuća naponska pojačavača. Prvi naponski pojačavač ima varijabilno pojačanje i sastoji se od operacionog pojačavača čija je prenosna karakteristika $A_I(s)$, naponom kontrolisanog otpornika R_{VCR2} i otpornika R_3 . Drugi naponski pojačavač ima

Slika 3.44 Blok šema optičkog prijemnika [22].

konstantno pojačanje i čine ga operacioni pojačavač čija je prenosna karakteristika $A_2(s)$ i otpornici R_5 i R_6 . Transimpedansa T(s) optičkog prijemnika data je izrazom:

$$T(s) = \frac{\left(1 + \frac{R_{s}}{R_{VCR2}}\right) \left(1 + \frac{R_{6}}{R_{s}}\right) \frac{R_{Z}R_{VCR1}}{R_{Z} + R_{VCR1}}}{\prod_{i=1}^{4} \left(1 + \frac{s}{\omega_{pi}}\right)} \approx \frac{A_{vor}A_{fix}R_{VCR1}}{\prod_{i=1}^{4} \left(1 + \frac{s}{\omega_{pi}}\right)},$$
(3.98)

gdje je R_Z izlazna otpornost na Z priključku strujnog prenosnika, $A_{var}=1+R_3/R_{VCR2}$ je varijabilno pojačanje prvog naponskog pojačavača, dok je $A_{fix}=1+R_6/R_5$ konstantno pojačanje drugog naponskog pojačavača. Pretpostavljeno je da je otpornost R_Z mnogo veća od otpornosti naponom kontrolisanog otpornika R_{VCRI} , $R_Z \gg R_{VCRI}$. Transimpedansa T(s) ima četiri realna i različita pola:

$$\omega_{\rho 1} = \frac{1}{\frac{R_z R_{VCR1}}{R_z + R_{VCR1}} C_{zT}} \approx \frac{1}{R_{VCR1} C_{zT}},$$
(3.99)

$$\omega_{\rho 2} = \frac{A_{01}\omega_{b1}}{1 + \frac{R_3}{R_{VCR2}}} = \frac{A_{01}\omega_{b1}}{A_{var}},$$
(3.100)

$$\omega_{p3} = \frac{A_{02}\omega_{h2}}{1 + \frac{R_6}{R_5}} = \frac{A_{02}\omega_{h2}}{A_{fix}},$$
(3.101)

$$\omega_{p4} = \frac{1}{R_{\chi} C_{\chi T}},$$
(3.102)

gdje je C_{ZT} ukupna kapacitivnost na Z priključku, R_X ulazna otpornost na X priključku, C_{XT} je ukupna kapacitivnost na X priključku strujnog prenosnika koja uključuje i kapacitivnost fotodiode C_{PD} , A_{01} i A_{02} su jednosmjerna pojačanja operacionih pojačavača, dok su ω_{b1} i ω_{b2}

dominantni polovi operacionih pojačavača. Može se pretpostaviti da je $\omega_{b1} \approx \omega_{b2}$ i $A_{01} \approx A_{02}$. S obzirom da transimpedansa T(s) nema nula i da su svi polovi realni i da se nalaze u lijevoj poluravni kompleksne ravni, sistem je stabilan. Polovi ω_{p1} i ω_{p2} su varijabilni jer zavise od varijabilnih otpornosti R_{VCR1} i R_{VCR2} , dok su polovi ω_{p3} i ω_{p4} fiksni. Frekventni opseg optičkog prijemnika ograničava pol ω_{p1} za slučaj velikih transimpedansi, jer tada otpornost R_{VCR1} ima relativno velike vrijednosti. Manjim dimenzijama aktivnih komponenti u sklopu izlaznog Z stepena strujnog prenosnika, ulaznog stepena prvog operacionog pojačavača, naponom kontrolisanog otpornika R_{VCR1} , kao i strujnog izvora I_{P2} , kapacitivnost C_{ZT} postaje manja, a samim tim frekventni opseg optičkog prijemnika za slučaj velikih transimpedansi postaje veći. Polovi ω_{p2} i ω_{p3} određuju frekventni opseg optičkog prijemnika kada su u pitanju manje vrijednosti transimpedansi jer je tada i otpornost R_{VCR1} mala. Pol ω_{p4} nema uticaja na frekventni opseg jer je ulazna otpornost strujnog prenosnika prve generacije na X priključku R_X veoma mala [20]. Na ovaj način je eliminisan uticaj parazitne kapacitivnosti fotodiode C_{PD} na frekventni opseg optičkog prijemnika. Dinamički opseg transimpedansi T_{max}/T_{min} optičkog prijemnika dat je izrazom:

$$\frac{T_{max}}{T_{mun}} = \frac{A_{varmux}R_{VCR1max}}{A_{varmun}R_{VC'R1mun}} = \frac{\left(1 + \frac{R_3}{R_{VC'R2mun}}\right)R_{VCR1max}}{\left(1 + \frac{R_3}{R_{VC'R2mun}}\right)R_{1C'R1mun}}.$$
(3.103)

Na osnovu prethodne relacije može se zaključiti da naponski pojačavač sa promjenljivim pojačanjem znatno proširuje dinamički opseg transimpedansi u odnosu na [20], kao i da naponski pojačavač sa fiksnim pojačanjem ne utiče na dinamički opseg transimpedansi. Uloga naponskog pojačavača sa fiksnim pojačanjem je proširenje frekventnog opsega optičkog prijemnika za male transimpedanse. Naime, ukoliko su pojačanja oba pojačavača manja, polovi ω_{p2} i ω_{p3} imaju veće vrijednosti, pa je i frekventni opseg optičkog prijemnika za male transimpedanse veći.

Za slučaj velikih transimpedansi reda M Ω , struja fotodiode ima veoma male vrijednosti. MOSFET-ovi koji konfigurišu strujni prenosnik bi pri tako malim strujama radili u potpražnom režimu, što bi znatno smanjilo frekventni opseg optičkog prijemnika. Iz tog razloga uvedeni su strujni izvori I_{P1} i I_{P2} koji su vezani za X i Z priključak strujnog prenosnika, respektivno, slika 3.45. Pri dovoljno velikim strujama, MOSFET-ovi u sklopu strujnog prenosnika biće u zasićenju.

Kao posljedica nesavršenosti strujnog prenosnika, struja I_z na Z priključku je samo približno jednaka struji na X priključku strujnog prenosnika, slika 3.46, i može se zapisati kao:

$$I_{z} = I_{p_{1}} + I_{pd} + \Delta I_{zz}, \qquad (3.104)$$

Slika 3.45 Električna šema naponom kontrolisanih strujnih izvora IPI i IP2 [22].

Slika 3.46 Izvor naponskog ofseta [22].

pri čemu ΔI_{x2} modeluje razliku ulazne i izlazne struje strujnog prenosnika. Uz pretpostavku da je struja koja teče kroz otpornik $R_{I'CRI}$ jednaka struji fotodiode I_{pd} , međusobna zavisnost struja I_{PI} i I_{P2} se može zapisati kao:

$$I_{P1} + \Delta I_{sc} = I_{P2} + I_{B3}, \qquad (3.105)$$

gdje je I_{B3} bazna struja bipolarnog tranzistora Q₃ koji je dio ulaznog stepena operacionog pojačavača u okviru naponskog pojačavača sa varijabilnim pojačanjem. Ukoliko prethodna jednakost nije zadovoljena, struja koja teče kroz otpornik R_{VCRI} neće biti jednaka struji fotodiode I_{pd} , što bi izazvalo naponski ofset. Budući da su vrijednosti struja ΔI_{xz} i I_{B3} nepoznate, strujni izvori I_{P1} i I_{P2} su realizovani kao naponom kontrolisani strujni izvori, sa dovoljno malom osjetljivošću, kako bi se mogla postići što manja vrijednost naponskog ofseta. Kompletna električna šema optičkog prijemnika prikazana je na slici 3.47. Naponom kontrolisan strujni izvor I_{P1} , slika 3.45, sastoji se od MOSFET-ova M_{34} i M_{36} koji su u zasićenju, otpornika R_8 , polarizacionog napona V_{B2} i kontrolnog napona V_{C4} . Naponom kontrolisan strujni izvor I_{P2} , slika 3.45, čine MOSFET-ovi M_{35} i M_{37} u zasićenju, MOSFET M_{38} u omskom režimu rada. otpornik R_9 , polarizacioni napon V_{B2} i kontrolni naponi V_{C3} i V_{C4} . MOSFET M_{38} predstavlja naponom

Slika 3.47 Električna šema optičkog prijemnika [22].

kontrolisan otpornik čija je otpornost data izrazom:

$$R_{\nu_{CR3}} = \frac{1}{\beta_{38} \left(V_{C3} - V_{i38} \right)},\tag{3.106}$$

gdje je β_{38} faktor pojačanja MOSFET-a M₃₈, dok je V_{I38} napon praga MOSFET-a M₃₈. MOSFET-ovi M₃₆ i M₃₇ sa polarizacionim naponom V_{B2} povećavaju izlazne otpornosti strujnih izvora I_{P1} i I_{P2} . Pretpostavljajući da su struje drejna MOSFET-ova M₃₄ i M₃₅ (I_{P1} i I_{P2}) dovoljno male i da su otpornosti R_8 i R_9+R_{VCR3} dovoljno male, naponi gejt-sors V_{GS34} i V_{GS35} MOSFET-ova M₃₄ i M₃₅ su približno jednaki kontrolnom naponu V_{C4} . Dakle, promjenom napona V_{C4} može se ostvariti značajna promjena struja I_{P1} i I_{P2} . Sa druge strane, promjenom napona V_{C3} , može se ostvariti mala promjena otpornosti R_{VCR3} , odnosno mala promjena struje I_{P2} . Znači, uz pomoć kontrolnih napona V_{C3} i V_{C4} , odgovarajućim odabirom otpornosti R_8 i R_9 ($R_8 > R_9$), može se ostvariti jedna od tri mogućnosti: $I_{P1} < I_{P2}$, $I_{P1} = I_{P2}$ ili $I_{P1} > I_{P2}$. Za struje I_{P1} i I_{P2} važe sljedeće relacije:

$$I_{P1} = \frac{1 + \beta_{34} R_8 \left(V_{C4} - V_{i34} \right) - \sqrt{1 + 2\beta_{34} R_8 \left(V_{C4} - V_{i34} \right)}}{\beta_{34} R_8^2},$$
(3.107)

$$I_{P2} = \frac{1 + \beta_{35} \left(R_9 + R_{VCR3}\right) \left(V_{C4} - V_{135}\right) - \sqrt{1 + 2\beta_{35} \left(R_9 + R_{VCR3}\right) \left(V_{C4} - V_{135}\right)}}{\beta_{35} \left(R_9 + R_{VCR3}\right)^2},$$
 (3.108)

3 Pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom

gdje su β_{34} i β_{35} faktori pojačanja MOSFET-ova M₃₄ i M₃₅, dok su V_{134} i V_{135} naponi praga MOSFET-ova M₃₄ i M₃₅. Promjene struja I_{P1} i I_{P2} usljed temperaturnih varijacija se međusobno poništavaju, ukoliko se uzme u obzir da je $R_{VCR3} << R_9$ i $R_8 \sim R_9$.

Naponom kontrolisane otpornike R_{VCR1} i R_{VCR2} čine MOSFET-ovi M₁ i M₂, odnosno, MOSFET-ovi M₃ i M₄, jedinični naponski pojačavač, i razdjelnik napona koji formiraju otpornici R_1 i R_2 , $R_1=R_2$. Naponom kontrolisani strujni izvori koji generišu kontrolne napone naponom kontrolisanih otpornika sastoje se od kaskodno vezanih MOSFET-ova M₁₈ i M₁₉, odnosno M₂₀ i M₂₁, polarizacionog napona V_{B2} i kontrolnih napona V_{C1} i V_{C2} . Ekvivalente otpornosti R_{VCR1} i R_{VCR2} date su sljedećim izrazima:

$$R_{VCR1} = \frac{1}{\beta_1 \left[\sqrt{\frac{\beta_{19}}{\beta_2}} \left(V_{DD} - V_{C1} + V_{t19} \right) - V_{t2} - V_{t1} \right]},$$
(3.109)

$$R_{\nu CR2} = \frac{1}{\beta_3 \left[\sqrt{\frac{\beta_{21}}{\beta_4}} \left(V_{DD} - V_{C2} + V_{121} \right) - V_{14} - V_{13} \right]},$$
(3.110)

gdje su β_l - β_4 , β_{19} , i β_{21} faktori pojačanja, V_{tl} - V_{t4} , V_{t19} , i V_{t21} naponi praga MOSFET-ova M₁-M₄, M₁₉, i M₂₁, respektivno, dok je V_{DD} napon napajanja. S obzirom da oba naponom kontrolisana otpornika R_{VCR1} i R_{VCR2} imaju iste napone na svojim ulazima, potreban je samo jedan jedinični naponski pojačavač i jedan razdjelnik napona. Jedinični naponski pojačavač se sastoji od bipolarnih tranzistora Q₃ i Q₄, koji formiraju ulazni diferencijalni par, MOSFET-ova M₁₁, M₁₂, M₁₄ i M₁₅ koji predstavljaju aktivno opterećenje u vidu strujnog ogledala, MOSFET-a M₁₇ i napona V_{B1} za polarizaciju, i izlaznog stepena koji čini bipolarni tranzistor Q₆ u formi *emitter follower*-a. Za razliku od naponom kontrolisanog strujnog izvora koji generiše kontrolni napon za naponom kontrolisan otpornik koji je prikazan u [20], ovdje predstavljeno rješenje odlikuje manja potrošnja, manja površina i veća osjetljivost.

Operacioni pojačavač u sklopu naponskog pojačavača sa varijabilnim pojačanjem čine bipolarni tranzistori Q₃ i Q₅ koji formiraju diferencijalni ulazni par, aktivno opterećenje koje se sastoji od MOSFET-ova M₁₁, M₁₃, M₁₄ i M₁₆, MOSFET-a M₁₇ i napona V_{B1} za polarizaciju, i izlaznog stepena koji čini bipolarni tranzistor Q₇ u formi *emitter follower*-a. Triplet strukturom omogućeno je da su bipolarni tranzistor Q₃, MOSFET-ovi M₁₁, M₁₄ i M₁₇ zajednički za oba jedinična pojačavača u okviru naponom kontrolisanih otpornika R_{VCR1} i R_{VCR2} , kao i za ulazni stepen operacionog pojačavača u sastavu naponskog pojačavača sa varijabilnim pojačanjem. Operacioni pojačavač u sklopu naponskog pojačavača sa fiksnim pojačanjem se sastoji od bipolarnih tranzistora Q₈ i Q₉, koji formiraju ulazni diferencijalni par, MOSFET-ova M₂₂, M₂₃, M_{24} i M₂₅ koji predstavljaju aktivno opterećenje, MOSFET-a M₂₆ i napona V_{B1} za polarizaciju, i izlaznog stepena koji čini bipolarni tranzistor Q₁₀ u formi *emitter follower*-a. Ključni dio izlaznog stepena u klasi AB predstavljaju bipolarni tranzistori Q_{14} , Q_{15} , Q_{16} i Q_{17} . Bipolarni tranzistor Q_{18} prihvata struju jednostavnog strujnog izvora koji čine MOSFET M_{33} i polarizacioni napon V_{B3} , kao i struju potrošača u toku *pull* faze. Polarizacija bipolarnog tranzistora Q_{18} izvršena je preko četiri redno vezana bipolarna tranzistora Q_{19} , Q_{20} , Q_{21} i Q_{22} , kako bi se dobio što bolji *slew-rate* izlaznog stepena, a samim tim i optičkog prijemnika u cjelini. Jedinični pojačavač, koga čine bipolarni tranzistori Q_{11} i Q_{12} koji formiraju ulazni diferencijalni par, MOSFET-ovi M_{27} , M_{28} , M_{29} i M_{30} kao aktivno opterećenje i MOSFET M_{31} sa naponom V_{B1} za polarizaciju, ima ulogu u proširenju frekventnog opsega naponskog pojačavača sa fiksnim pojačanjem.

Naponski ofset optičkog prijemnika nastaje kao posljedica nedovoljno dobrog podešavanja naponom kontrolisanih strujnih izvora I_{P1} i I_{P2} , ulaznih struja operacionih pojačavača, kao i naponskog ofseta samih operacionih pojačavača, slika 3.48. Naponski ofset optičkog prijemnika dat je izrazom:

$$V_{OFF} = V_{OUT} - V_{REF} = \left(1 + \frac{R_3}{R_{VCR2}}\right) \left(1 + \frac{R_6}{R_5}\right) R_{VCR1} \left(I_{P1} + \Delta I_{sc} - I_{P2} - I_{B3}\right) + \left(1 + \frac{R_6}{R_5}\right) R_3 I_{B5} + R_6 I_{B9} + \left(1 + \frac{R_6}{R_5}\right) \left[\left(1 + \frac{R_3}{R_{VCR2}}\right) V_{OFF1} + V_{OFF2}\right].$$
(3.111)

Prvi član u prethodnom izrazu potiče od nedovoljno dobrog podešavanja naponom kontrolisanih strujnih izvora I_{P1} i I_{P2} . Drugi član potiče od ulaznih struja polarizacije I_{B5} i I_{B9} operacionih pojačavača. I_{B5} je bazna struja bipolarnog tranzistora Q_5 koji konfiguriše ulazni stepen operacionog pojačavača u sklopu naponskog pojačavača sa varijabilnim pojačanjem. I_{B9} je bazna struja bipolarnog tranzistora Q_9 koji konfiguriše ulazni stepen operacionog pojačavača u sklopu naponskog pojačavača sa fiksnim pojačanjem. Treći član potiče od naponskog ofseta samih operacionih pojačavača, V_{OFF1} i V_{OFF2} . Metod eliminacije ofseta demonstriran je slikom 3.49.

Finim podešavanjem naponom kontrolisanog strujnog izvora I_{P2} moguće je eliminisati prvi član prethodne jednačine, što znači da uloga naponom kontrolisanih strujnih izvora I_{P1} i I_{P2} nije samo proširenje frekventnog opsega optičkog prijemnika, već i smanjenje ofseta. Naponski ofset optičkog prijemnika je sada dat izrazom:

$$V_{OFF} = V_{OUT} - V_{REF} = \left(1 + \frac{R_6}{R_5}\right) R_3 I_{B5} + R_6 I_{B9} + \left(1 + \frac{R_6}{R_5}\right) \left[\left(1 + \frac{R_3}{R_{FCR2}}\right) V_{OFF1} + V_{OFF2}\right].$$
 (3.112)

Član R_3I_{B5} je posebno kritičan iz razloga što je pojačan članom $1+R_6/R_5=A_{fix}$ koji predstavlja fiksno pojačanje naponskog pojačavača. Ovaj član se može zanemariti ukoliko su otpornosti R_3 i

 R_6 dovoljno male. U tom slučaju bi i otpornosti R_{VCR2} i R_5 trebalo da budu male, kako bi se ostvarilo određeno naponsko pojačanje. Smanjivanjem otpornosti povećala bi se potrošnja. Iz tog razloga uvedeni su otpornici R_4 i R_7 , slika 3.49. Sada izraz za naponski ofset optičkog prijemnika ima sljedeći oblik:

$$V_{OFF} = V_{OUT} - V_{REF} = \left(1 + \frac{R_6}{R_5}\right) \left(R_3 I_{H5} - R_4 I_{B8}\right) + R_6 I_{B9} - R_7 I_{B11} + \left(1 + \frac{R_6}{R_5}\right) \left[\left(1 + \frac{R_3}{R_{VCR2}}\right) V_{OFF1} + V_{OFF2}\right],$$
(3.113)

gdje je I_{B8} bazna struja bipolarnog tranzistora Q₈ koji konfiguriše ulazni stepen operacionog pojačavača u sklopu naponskog pojačavača sa fiksnim pojačanjem, dok je I_{B11} bazna struja bipolarnog tranzistora Q₁₁ koji konfiguriše ulazni stepen jediničnog pojačavača u okviru izlaznog stepena u klasi AB. Dakle, uloga jediničnog pojačavača između naponskog pojačavača sa fiksnim pojačanjem i izlaznog stepena u klasi AB nije samo postizanje većeg frekventnog opsega, već i smanjenje naponskog ofseta koji potiče od konačnih vrijednosti ulaznih struja operacionih pojačavača. U cilju eliminacije naponskog ofseta koji potiče od konačnih ulaznih struja operacionih pojačavača I_{B5} i I_{B9} , otpornosti R_4 i R_7 treba da zadovolje sljedeće uslove:

$$R_4 = \frac{I_{B5}}{I_{B8}} R_3, \tag{3.114}$$

$$R_7 = \frac{I_{H9}}{I_{B11}} R_6.$$
(3.115)

Adekvatnim izborom otpornosti R_3 , R_4 , R_6 i R_7 naponski ofset optičkog prijemnika se može svesti na:

$$V_{OFF} = V_{OUT} - V_{REF} = \left(1 + \frac{R_6}{R_5}\right) \left[\left(1 + \frac{R_3}{R_{VCR2}}\right) V_{OFF1} + V_{OFF2} \right].$$
 (3.116)

Budući da oba operaciona pojačavača imaju ulazni diferencijalni stepen od bipolarnih tranzistora sa aktivnim opterećenjem, naponski ofset operacionih pojačavača, a samim tim i optičkog prijemnika u cjelini, bi trebalo da bude dovoljno mali.

Prema eksperimentalnim rezultatima prikazanim u [22], osjetljivost integrisane PIN fotodiode je R=0.16 A/W za svjetlost talasne dužine $\lambda=410$ nm, R=0.52 A/W za svjetlost talasne dužine $\lambda=660$ nm i R=0.48 A/W za svjetlost talasne dužine $\lambda=780$ nm. Frekventni opseg fotodiode je 720 MHz za svjetlost talasne dužine $\lambda=660$ nm i 700 MHz za svjetlost talasne dužine $\lambda=780$ nm. Mjerenja su vršena za svjetlost talasne dužine $\lambda=660$ nm. Maksimalna transimpedansa optičkog prijemnika je $T_{max}=4745.2$ k Ω , dok je minimalna transimpedansa

Slika 3.48 Izvori naponskog ofseta [22].

Slika 3.49 Metod eliminacije naponskog ofseta [22].

 T_{mun} =8.8 k Ω , što znači da je dinamički opseg transimpedansi T_{max}/T_{mun} =541. Frekventni opseg $f_{.3dB}$ optičkog prijemnika kreće se od 25.61 MHz ($T=T_{max}$) do 277.4 MHz ($T=T_{mun}$). Maksimalna vrijednost proizvodatransimpedanse i frekventnog opsega je ($Tf_{.3dB}$)_{max}= 122 T Ω Hz. Maksimalna osjetljivost optičkog prijemnika iznosi S_{max} =2468 mV/ μ W, dok je minimalna osjetljivost optičkog prijemnika S_{mun} =4.56 mV/ μ W, što znači da je dinamički opseg osjetljivosti S_{max}/S_{mun} =541. Snaga izlaznog šuma je -67.8 dBm za transimpedansu T=83.2 k Ω , dok je za transimpedansu T=236.9 k Ω snaga izlaznog šuma -64.9 dBm, za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz. Maksimalna vrijednost naponskog ofseta je 13.7 mV. Greška linearnosti je manja od 2.8 %. Izmjerena maksimalna potrošnja za napon napajanja od 5 V je P=4.3 mW. Aktivna površina čipa optičkog prijemnika je 330 x 210 μ m² uključujući fotodiodu.

Na osnovu analize postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom može se zaključiti sljedeće:

 Kod optičkih prijemnika sa promjenljivom transimpedansom sa otpornim mrežama [4]-[11] može se dobiti svega nekoliko različitih transimpedansi. Stabilnost ovog tipa optičkog prijemnika sa varijabilnom transimpedansom ugrožena je kapacitivnošću fotodiode. Iz tog

3 Pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom

razloga, potrebno je izvršiti frekvencijsku kompenzaciju, umetanjem kondenzatora paralelno otporniku, u granu negativne povratne sprege. Parazitne kapacitivnosti prekidačkih tranzistora, pomoću kojih se mijenja transimpedansa, značajno redukuju frekventni opseg optičkog prijemnika.

- Optički prijemnici sa promjenljivom transimpedansom sa strujnim pojačavačem imaju tangens-hiperbolnu prenosnu karakteristiku strujnog pojačavača [12], ili eksponencijalnu prenosnu karakteristiku strujnog pojačavača [15], [16]. Strujni pojačavač sa promjenljivim pojačanjem u [14] baziran je na programabilnim strujnim ogledalima i ima samo diskretne vrijednosti pojačanja, što znači da i optički prijemnik u cjelini ima samo diskretne vrijednosti transimpedanse. Kod optoelektronskih integrisanih kola iz ove grupe veliki dinamički opseg transimpedansi često znači i relativno veliku potrošnju.
- Treći tip optičkih prijemnika sa promjenljivom transimpedansom baziran je na kombinaciji strujnog i naponskog procesiranja, sa strujnim prenosnicima i naponom kontrolisanim otpornicima [17]-[23]. Kod ovih rješenja postignuta je visoka foto-osjetljivost i linearnost, mala potrošnja, mali ofset, dok je frekventni opseg nezavisan od kapacitivnosti fotodiode.

4 OPTIČKI PRIJEMNIK SA PROMJENLJIVOM TRANSIMPEDANSOM U INTEGRISANOJ BICMOS TEHNOLOGIJI NA BAZI TRANSLINEARNE PETLJE SA BIPOLARNIM TRANZISTORIMA

Predloženi optički prijemnik sa promjenljivom transimpedansom [39], [40], [41] pripada grupi optoelektronskih integrisanih kola sa strujnim pojačavačima sa promjenljivim pojačanjem. Naponom kontrolisan strujni pojačavač baziran je na translinearnoj petlji sa bipolarnim tranzistorima. Transimpedansa je proporcionalna četvrtom stepenu odnosa dvije kontrolne struje. Jedna od kontrolnih struja je konstantna, dok je druga promjenljiva i pomoću nje se kontroliše transimpedansa optičkog prijemnika. Integrisana fotodioda je PIN tipa.

U ovom poglavlju predstavljen je dizajn predloženog optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima kroz prikaz pojedinih funkcionalnih cjelina i kompletnu električnu šemu. Detaljno je opisan postupak kontrole transimpedanse predloženog optičkog prijemnika i dati odgovarajući matematički modeli. Prikazan je metod eliminacije naponskog ofseta, izvršena analiza frekventnog odziva i stabilnosti, kao i analiza šuma.

4.1 Osnovna struktura optičkog prijemnika sa promjenljivom transimpedansom na bazi strujnog pojačavača sa varijabilnim pojačanjem

Osnovna struktura optičkog prijemnika sa promjenljivom transimpedansom na bazi strujnog pojačavača sa varijabilnim pojačanjem prikazana je na slici 4.1. Naponom kontrolisan strujni pojačavač VCCA (*Voltage-Controlled Current Amplifier*) pojačava ili slabi struju fotodiode I_{pd} . Struja sa izlaza strujnog pojačavača I_{cvc} predstavlja ulaznu struju konvertora struje u napon CVC (*Current-to-Voltage Converter*). Naponom kontrolisan strujni pojačavač i konvertor struje u napon formiraju transimpedansni pojačavač TIA (*Transimpedance Amplifier*). Transimpedansa optičkog prijemnika *T* je naponom kontrolisana i može biti manja ili veća od otpornosti R_F u grani negativne povratne sprege operacionog pojačavača u sklopu konvertora struje u napon. Ekvivalentna kapacitivnost C_X na ulazu naponom kontrolisanog strujnog pojačavača predstavlja sumu kapacitivnosti fotodiode C_{PD} i ulazne kapacitivnosti strujnog pojačavača C_{Cdl} :

$$C_X = C_{PD} + C_{CAI} \,. \tag{4.1}$$

Slika 4.1 Optički prijemnik sa promjenljivom transimpedansom na bazi strujnog pojačavača sa promjenljivim pojačanjem.

Ekvivalentna kapacitivnost C_Z na izlazu naponom kontrolisanog strujnog pojačavača predstavlja sumu ulazne kapacitivnosti operacionog pojačavača C_{OAI} , izlazne kapacitivnosti strujnog pojačavača C_{CAO} i ekvivalentne kapacitivnosti C_{RF} polisilicijumskog otpornika R_F gledano sa ulaza konvertora struje u napon:

$$C_{Z} = C_{OAI} + C_{CAO} + C_{RF} \,. \tag{4.2}$$

Nestabilnost optičkog prijemnika uzrokovana uticajem ekvivalentne kapacitivnosti C_Z na izlazu naponom kontrolisanog strujnog pojačavača može se eliminisati postavljanjem kondenzatora C_F u granu negativne povratne sprege operacionog pojačavača paralelno otporniku R_F u sklopu konvertora struje u napon [7].

4.2 PIN fotodioda

U principu, bilo koji pn spoj koji se može dobiti standardnim procesom izrade integrisanih poluprovodničkih kola može poslužiti kao fotodioda, slika 4.2. Prilikom osvjetljenja pn spoja, fotoni predaju svoju energiju elektronima u kovalentnim vezama što uzrokuje generisanje parova elektron-šupljina. Na ovaj način elektroni iz valentne energetske zone prelaze u provodnu energetsku zonu i postaju slobodni nosioci naelektrisanja. Od značaja za rad fotodiode su samo oni parovi elektron-šupljina koji se nalaze u oblasti prostornog tovara, a koji su nastali raskidanjem kovalentnih veza preuzimanjem energije fotona. Pod uticajem ugrađenog električnog polja E, unutar oblasti prostornog tovara, dolazi do usmjerenog kretanja elektrona ka ivici oblasti prostornog tovara na strani poluprovodnika n tipa i šupljina ka ivici oblasti prostornog tovara na strani poluprovodnika p tipa. Nagomilani slobodni nosioci naelektrisanja na ivicama oblasti prostornog tovara difuzijom prelaze u kvazineutralna područja. U osvijetljenim djelovima kvazineutralnih područja na strani poluprovodnika n i p tipa takođe se generišu parovi elektron-šupljina na račun energije fotona, ali oni ne utiču na provođenje fotodiode. Kao posljedica, kada se na fotodiodu priključi potrošač R dobija se struja fotodiode čiji je smjer

Slika 4.2 Princip rada fotodiode.

prikazan na slici 4.2. S obzirom da u standardnim tehnološkim procesima nije moguće napraviti vertikalni pn spoj kao na slici 4.2, poprečni presjek realne fotodiode prikazan je na slici 4.3. Kod realne fotodiode pn spoj je realizovan u horizontalnoj ravni. Pri tome, debljina sloja površinskog poluprovodnika (na slici 4.3 to je poluprovodnik n tipa), izloženog djelovanju svjetlosti, treba da bude što manja. Ukoliko je debljina sloja poluprovodnika n tipa dovoljno mala, fotoni će prodirati kroz njega ne predajući svoju energiju elektronima unutar kovalentnih veza u samom poluprovodniku n tipa. Cilj je da se razmjena energije fotona sa elektronima unutar kovalentnih veza obavi u oblasti prostornog tovara.

Dio fotona koji generišu parove elektron-šupljina, u odnosu na ukupan broj fotona upadne svjetlosti, označava se kao stepen iskorišćenja upadne svjetlosti i označava se sa η [2]. Fotodioda se inverzno polariše kako bi se formiralo dovoljno jako električno polje E unutar oblasti prostornog tovara koje usmjerava kretanje elektrona, odnosno šupljina. Električno polje unutar oblasti prostornog tovara, pojačano inverznom polarizacijom *pn* spoja, uzrokuje širenje oblasti prostornog tovara. Što je širina oblasti prostornog tovara veća, veća je vjerovatnoća da će foton biti apsorbovan, pa je i stepen iskorišćenja η veći. Iz tog razloga, između poluprovodnika p i n

Slika 4.3 Poprečni presjek realne fotodiode.

tipa umeće se sloj slabo dopiranog poluprovodničkog materijala - *i* (*intrinsic*) sloj. Na taj način dobija se PIN fotodioda [42]-[58], slika 4.4. Naravno, što je širina *i* sloja veća, potrebno je veće vrijeme da elektron, odnosno šupljina, pređu *i* sloj, čineći odziv fotodiode sporijim.

Zavisnost između optičke snage upadne svjetlosti i struje fotodiode data je izrazom [2]:

$$I_{pd} = \eta \frac{\lambda q}{hc} P_{opt} = R P_{opt} , \qquad (4.3)$$

pri čemu je λ talasna dužina svjetlosti, q elementarno naelektrisanje, h Planck-ova konstanta, c brzina svjetlosti, dok je P_{opt} optička snaga upadne svjetlosti. Konstanta proporcionalnosti između struje fotodiode I_{pd} i optičke snage upadne svjetlosti P_{opt} označava se kao osjetljivost R (*responsivity*) fotodiode [2]:

$$R = \eta \frac{\lambda q}{hc}$$
(4.4)

Osjetljivost fotodiode R je njena osnovna karakteristika, koja u značajnoj mjeri određuje osjetljivost optičkog prijemnika. Osim visokog stepena iskorišćenja η , odnosno velike osjetljivosti R fotodiode, potrebno je obezbijediti i što manju refleksiju svjetlosti od površine fotodiode, što se ostvaruje pomoću ARC (*Anti-Reflecting Coating*) sloja. ARC predstavlja veoma tanki sloj dielektrika koji se nalazi na površini fotodiode, čija funkcija je da spriječi refleksiju svjetlosti u određenom opsegu talasnih dužina, po principu destruktivne interferencije. Debljina ARC sloja može se optimizovati samo za jednu vrijednost talasne dužine svjetlosti λ [3].

Poprečni presjek PIN fotodiode koja je korišćena pri realizaciji optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima prikazan je na slici 4.5 [42], [43]. Fotodiodu čini n^+ sloj koji predstavlja katodu, n^- i p^- epitaksijalni slojevi koji predstavljaju *i* sloj, dok je anoda formirana od p^+ podloge povezane na najniži napon u kolu. Katoda je okružena prstenom od p well-a koji je na istom naponu kao i

Slika 4.4 PIN fotodioda.

Slika 4.5 Poprečni presjek PIN fotodiode [42].

anoda. U standardnim BiCMOS procesima koncentracija primjesa u n epitaksijalnom sloju je veoma visoka. Iz tog razloga, kada bi se koristio standardni BiCMOS proces za realizaciju PIN fotodiode (a samim tim i čitavog optoelektronskog integrisanog kola), oblast prostornog tovara od anode do katode fotodiode ne bi bila jedinstvena, što nepovoljno utiče na osjetljivost fotodiode R, kao i na frekventne karakteristike PIN fotodiode. Prethodno opisan problem rješava se smanjenjem koncentracije primjesa u n epitaksijalnom sloju koja podrazumijeva modifikaciju standardnog BiCMOS procesa. Naime, oblast prostornog tovara će se prostirati od anode do katode fotodiode. Treba napomenuti da se kvalitet aktivnih i pasivnih komponenti ne umanjuje ovom modifikacijom standardnog BiCMOS procesa [42]. Na osnovu slike 4.6 i *Poisson*-ove relacije [59], dobijaju se izrazi za električno polje *E* unutar oblasti prostornog tovara PIN fotodiode:

a) $n^+ \rightarrow n^- epi$ spoj

1. $x_1 < x < W_1$:

$$E = -\frac{qN_{D+}}{\varepsilon} (x - x_1), \qquad (4.5)$$

2. $W_1 < x < x_2$:

$$E = \frac{qN_{D-}}{\varepsilon} \left[x - W_{i} - \frac{N_{D+}}{N_{D-}} (W_{i} - x_{i}) \right], \qquad (4.6)$$

b) $n^- epi \rightarrow p^- epi$ spoj

1.
$$x_3 < x < W_1 + W_2$$
:

$$E = -\frac{qN_{D-}}{\varepsilon} (x - x_{1}), \qquad (4.7)$$

2. $W_1 + W_2 < x < x_4$:

$$E = \frac{qN_{A-}}{\varepsilon} \left[x - W_1 - W_2 - \frac{N_{D-}}{N_{A-}} (W_1 + W_2 - x_3) \right],$$
(4.8)

c) $p^- epi \rightarrow p^+$ spoj

1. $x_5 < x < W_1 + W_2 + W_3$:

$$E = -\frac{qN_{A-}}{\varepsilon} (x - x_{\rm s}), \qquad (4.9)$$

2. $W_1 + W_2 + W_3 < x < x_6$:

$$E = \frac{qN_{A+}}{\varepsilon} \left[x - W_1 - W_2 - W_3 - \frac{N_{A-}}{N_{A+}} (W_1 + W + W_3 - x_5) \right],$$
(4.10)

gdje je q elementarno naelektrisanje, ε dielektrična konstanta (propustljivost) silicijuma, N_{D^+} je koncentracija donora u n^+ sloju, N_{D^-} je koncentracija donora u n^- epi sloju, N_{A^-} je koncentracija akceptora u p^- epi sloju, N_{A^+} je koncentracija akceptora u p^+ sloju, W_I je širina n^+ sloja, W_2 je širina n^- epi sloja, W_3 je širina p^- epi sloja i W_4 je širina p^+ sloja.

Oblast prostornog tovara $n^+ \rightarrow n^- epi$ spoja se preklapa sa oblašću prostornog tovara $n^- epi \rightarrow p^- epi$ spoja, $x_3 < x_2$. Rezultujuće električno polje za $x_3 < x < x_2$ dato je kao:

$$E = -\frac{qN_{D-}}{\varepsilon} \left[W_1 + \frac{N_{D+}}{N_{D-}} (W_1 - x_1) - x_3 \right] = const.$$
(4.11)

Oblast prostornog tovara $n^- epi \rightarrow p^- epi$ spoja preklapa se sa oblašću prostornog tovara $p^- epi \rightarrow p^+$ spoja, $x_5 < x_4$. Rezultujuće električno polje za $x_5 < x < x_4$ dato je kao:

$$E = -\frac{qN_{A-}}{\varepsilon} \left[W_1 + W_2 + \frac{N_{D-}}{N_{A-}} (W_1 + W_2 - x_3) - x_5 \right] = const.$$
(4.12)

Grafik električnog polja prikazan je na slici 4.6, pri čemu je:

$$E_1 = -\frac{qN_{D+}}{\varepsilon} (W_1 - x_1), \qquad (4.13)$$

$$E_{2} = -\frac{qN_{D-}}{\varepsilon} (W_{1} + W_{2} - x_{3}), \qquad (4.14)$$

$$E_{3} = -\frac{qN_{A^{-}}}{\varepsilon} \left(W_{1} + W_{2} + W_{3} - x_{5} \right), \qquad (4.15)$$

$$E_{4} = -\frac{qN_{D-}}{\varepsilon} \left[W_{1} + \frac{N_{D+}}{N_{D-}} (W_{1} - x_{1}) - x_{3} \right] = const., \qquad (4.16)$$

$$E_{5} = -\frac{qN_{A}}{\varepsilon} \left[W_{1} + W_{2} + \frac{N_{D}}{N_{A}} (W_{1} + W_{2} - x_{3}) - x_{5} \right] = const.$$
(4.17)

Optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima je dizajniran i fabrikovan u dvije različite tehnologije: 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Debljina ARC sloja PIN fotodiode u 0.6 µm BiCMOS silicijumskoj tehnologiji je optimizovana za crvenu svjetlost (660 nm $<\lambda <$ 680 nm). Osjetljivost ove PIN fotodiode je R=0.53 A/W za talasnu dužinu svjetlosti λ =675 nm, dok je za talasnu dužinu svjetlosti λ =780 nm osjetljivost fotodiode

Slika 4.6 PIN fotodioda, za određivanje jednačina električnog polja i grafički prikaz električnog polja unutar oblasti prostornog tovara PIN fotodiode.

77 4 Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehn. na bazi TLP sa BJT-ovima

R=0.48 A/W i za talasnu dužinu svjetlosti λ =405 nm osjetljivost fotodiode R=0.17 A/W [43]. Frekventni opseg fotodiode u 0.6 µm BiCMOS silicijumskoj tehnologiji je 720 MHz za svjetlost talasne dužine λ =660 nm. Frekventni opseg fotodiode za talasne dužine svjetlosti λ =405 nm i λ =780 nm nije izmjeren. Debljina ARC sloja PIN fotodiode u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji je optimizovana za talasnu dužinu svjetlosti λ =785 nm. Za ovu talasnu dužinu osjetljivost fotodiode R=0.47 A/W (na osnovu relacije (4.4) dobija se da je stepen iskorišćenja je η =74.3 %), dok je za λ =675 nm osjetljivost fotodiode R=0.4 A/W (na osnovu relacije (4.4) dobija se da je stepen iskorišćenja je η =73.55 %) i za λ =850 nm osjetljivost fotodiode R=0.34 A/W (na osnovu relacije (4.4) dobija se da je stepen iskorišćenja je η =49.65 %) [47]. Frekventni opseg fotodiode u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji je kreće se od 300 MHz za svjetlost talasne dužine λ =850 nm do 1.25 GHz za svjetlost talasne dužine λ =405 nm [47].

4.3 Kontrola transimpedanse optičkog prijemnika pomoću kontrolnih struja primjenom translinearne petlje sa bipolarnim tranzistorima

Naponom kontrolisan strujni pojačavač u sklopu transimpedansnog pojačavača optičkog prijemnika sa promjenljivom transimpedansom treba da ispuni sljedeće zahtjeve:

- Ulazna otpornost naponom kontrolisanog strujnog pojačavača treba da bude dovoljno mala kako bi frekvencija pola koji je definisan tom ulaznom otpornošću i kapacitivnošću C_X (4.1) imala dovoljno veliku vrijednost. Na taj način, uticaj kapacitivnosti fotodiode C_{PD} na frekventni opseg optičkog prijemnika bio bi smanjen [17],
- Dinamički opseg strujnog pojačanja $(I_{cvc}/I_{pd})_{max}/(I_{cvc}/I_{pd})_{min}$ treba da ima dovoljno veliku vrijednost, kako bi se ostvario širok dinamički opseg transimpedansi T_{max}/T_{min} ,
- Osjetljivost izlazne struje na promjene kontrolnog napona treba da ima optimalnu vrijednost (nije poželjno da bude ni previše velika, ni previše mala),
- Jednostavan dizajn.

Translinearna petlja sa bipolarnim tranzistorima simetričnog B (balanced) tipa [36], [60] veoma je pogodna za realizaciju strujnog pojačavača sa promjenljivim pojačanjem u sklopu optičkog prijemnika sa promjenljivom transimpedansom. Ova translinearna petlja sa bipolarnim tranzistorima ima dva strujna ulaza male ulazne otpornosti, strujno pojačanje se jednostavno može mijenjati u širokom opsegu, osjetljivost izlazne struje na kontrolne parametre se može podešavati, i dizajn je veoma jednostavan. Pojednostavljena šema optičkog prijemnika na bazi osnovne translinearne petlje sa bipolarnim tranzistorima prikazana je na slici 4.7. Strujni pojačavač sa varijabilnim pojačanjem čini translinearna petlja formirana od bipolarnih tranzistora Q_1 - Q_4 , dva kontrolna strujna izvora I_{C1} i I_{C2} kontrolisana kontrolnim naponima V_{C1} i

Slika 4.7 Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na bazi osnovne translinearne petlje sa bipolarnim tranzistorima.

 V_{C2} i referentni napon V_{REFI} . Strujni ulazi male ulazne otpornosti su na emitorima bipolarnih tranzistora Q_2 i Q_3 , dok je strujni ulaz velike ulazne otpornosti na kolektoru bipolarnog tranzistora Q_1 . U cilju dobijanja šireg frekventnog opsega, fotodiodu treba vezati za strujni ulaz male ulazne otpornosti. Na taj način će frekvencija pola, koji formira ta otpornost i ekvivalentna kapacitivnost na tom strujnom ulazu, biti dovoljno velika. Kako izlazna struja strujnog pojačavača treba da bude direktno proporcionalna ulaznoj struji, fotodioda se veže za emitor bipolarnog tranzistora Q_2 , dok se kontrolni strujni izvor I_{C2} veže za emitor bipolarnog tranzistora Q_3 . Ulazna kapacitivnost C_X strujnog pojačavača data je izrazom:

$$C_{\chi} = C_{B1} \approx C_{PD} + C_{BE1} + \frac{C_{C1} \left(C_{BC1} + C_{BE2} \right)}{C_{C1} + C_{BC1} + C_{BE2}} \approx C_{PD} + C_{BE1}, \qquad (4.18)$$

gdje je C_{PD} kapacitivnost fotodiode, C_{BI} ekvivalentna kapacitivnost na bazi bipolarnog tranzistora Q_1 , C_{BEI} kapacitivnost baza-emitor bipolarnog tranzistora Q_1 , C_{CI} ekvivalentna kapacitivnost na kolektoru bipolarnog tranzistora Q_1 , C_{BCI} kapacitivnost baza-kolektor bipolarnog tranzistora Q_1 , dok je C_{BE2} kapacitivnost baza-emitor bipolarnog tranzistora Q_2 . Prilikom frekventne analize treba uzeti u obzir i ekvivalentnu kapacitivnost C_{BI} na bazi bipolarnog tranzistora Q_4 . Izlazna kapacitivnost C_Z strujnog pojačavača predstavljena je ekvivalentnom kapacitivnošću C_{C4} na kolektoru bipolarnog tranzistora Q_4 :

$$C_{z} = C_{C4},$$
 (4.19)

koja zavisi i od parametara konvertora struje u napon transimpedansnog pojačavača.

Konvertor struje u napon sastoji se od operacionog pojačavača, referentnog napona V_{REF2} i paralelne veze otpornika R_F i kondenzatora C_F u grani negativne povratne sprege operacionog pojačavača. Na osnovu razmatranja u poglavlju 2, slika 2.3, razlika između jednosmjernog napona na izlazu konvertora struje u napon V_{OUT} i referentnog napona V_{REF2} približno je konstantna i iznosi V_{OUT} - V_{REF2} =0.5 V za sve transimpedanse T. Pošto je V_{OUT} - V_{REF2} = $R_F I_{CVC}$, jasno je da jednosmjerna struja na ulazu konvertora struje u napon (na izlazu naponom kontrolisanog strujnog pojačavača) I_{CVC} mora biti ista za sve transimpedanse T, tj. za sve vrijednosti jednosmjerne struje fotodiode I_{PD} :

$$I_{CVC} = \frac{V_{OUT} - V_{REF2}}{R_F} = \frac{0.5 \text{ V}}{R_F} = const., \qquad (4.20)$$

što znači da se njena konstantna vrijednost može izabrati preko otpornosti R_F .

PIN fotodioda je polarisana preko strujnog izvora I_{CI} koji određuje napon baza-emitor V_{BEI} bipolarnog tranzistora Q₁ i referentnog napona V_{REFI} . Kontrolna struja I_{CI} je konstantna, kako bi napon baza-emitor V_{BEI} bipolarnog tranzistora Q₁ bio konstantan i na taj način se obezbijedila konstantna polarizacija fotodiode.

Zanemarujući bazne struje i *Early*-jev efekat bipolarnih tranzistora Q_1 - Q_4 , jednosmjerna izlazna struja strujnog pojačavača I_{CVC} data je kao:

$$I_{CVC} \approx \frac{I_{S3}I_{S4}}{I_{S1}I_{S2}} \frac{I_{C1}}{I_{C2}} I_{PD}, \qquad (4.21)$$

gdje su I_{SI} - I_{SI} struje zasićenja bipolarnih tranzistora Q_1 - Q_4 , respektivno, dok je I_{PD} jednosmjerna struja fotodiode. Uzimajući u obzir da je I_{CI} =const., dinamički opseg strujnog pojačanja CGDR (Current Gain Dynamic Range) je:

$$CGDR = \frac{\left(\frac{I_{CVC}}{I_{PD}}\right)_{max}}{\left(\frac{I_{CVC}}{I_{PD}}\right)_{mun}} = \frac{\frac{I_{CVC}}{I_{PDmun}}}{\frac{I_{CVC}}{I_{PDmun}}} \approx \frac{I_{C2max}}{I_{PDmun}} \approx \frac{I_{C2max}}{I_{C2mun}}.$$
(4.22)

Na osnovu (4.20) i (4.21), jednosmjerna transimpedansa T optičkog prijemnika prikazanog na slici 4.7 može se zapisati na sljedeći način:

$$T = \frac{V_{OUT} - V_{REF2}}{I_{PD}} \approx \frac{I_{S3}I_{S4}}{I_{S1}I_{S2}} \frac{I_{C1}}{I_{C2}} R_F, \qquad (4.23)$$

Transimpedansa T se može mijenjati varijacijom odnosa kontrolnih struja I_{C1} i I_{C2} . Dinamički opseg transimpedansi TDR (Transimpedance Dynamic Range) dat je izrazom:

$$TDR = \frac{T_{max}}{T_{min}} \approx \frac{\left(\frac{I_{C1}}{I_{C2}}\right)_{max}}{\left(\frac{I_{C1}}{I_{C2}}\right)_{min}} = \frac{\frac{I_{C1}}{I_{C2min}}}{\frac{I_{C1}}{I_{C2max}}} = CGDR.$$
(4.24)

Minimalna vrijednost I_{C2min} kontrolne struje I_{C2} ne bi trebalo da bude suviše mala u cilju postizanja dovoljno velikog frekventnog opsega. Sa druge strane, maksimalna vrijednost I_{C2max} kontrolne struje IC2 treba da ima dovoljno veliku vrijednost kako bi dinamički opseg strujnog pojačanja CGDR bio veliki. Za dinamički opseg TDR=CGDR=1000, i najmanju kontrolnu struju $I_{C2mm}=20 \mu A$, najveća kontrolna struja bi bila $I_{C2max}=20 m A$. Potrošnja bi na ovaj način bila neprihvatljivo velika za mnoge aplikacije. Drugim riječima, osjetljivost $dT/dI_{C2}=-T/I_{C2}$ transimpedanse T na promjene kontrolne struje I_{C2} je suviše mala. Radi postizanja velikog dinamičkog opsega transimpedansi TDR, strujni pojačavač u sklopu optičkog prijemnika sa promjenljivom transimpedansom treba da ima veliki dinamički opseg strujnog pojačanja CGDR (4.22), a da je pri tome potrošnja mala. U cilju rješavanja opisanog problema, kao i u cilju eliminacije potrebe za referentnim naponom V_{REFI} , dizajniran je strujni pojačavač sa promjenljivim pojačanjem na bazi modifikovane translinearne petlje simetričnog tipa sa bipolarnim tranzistorima. Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na bazi modifikovane translinearne petlje sa bipolarnim tranzistorima prikazana je na slici 4.8. Za emitore bipolarnih tranzistora Q1 i Q3 (slika 4.7) vezana su po tri diodno povezana bipolarna tranzistora. Zanemarujući bazne struje i Early-jev efekat bipolarnih tranzistora Q1-Q10, dobija se izraz za jednosmjernu izlaznu struju strujnog pojačavača Icvc sa promjenljivim pojačanjem:

$$I_{CVC} \approx \frac{I_{S6}I_{S7}I_{S8}I_{S9}I_{S10}}{I_{S1}I_{S2}I_{S3}I_{S4}I_{S5}} \left(\frac{I_{C1}}{I_{C2}}\right)^4 I_{PD}, \qquad (4.25)$$

gdje su I_{SI} - I_{SI0} struje saturacije bipolarnih tranzistora Q_1 - Q_{10} . Uzimajući u obzir da je I_{CI} =const., dinamički opseg strujnog pojačanja CGDR dat je sljedećom relacijom:

$$CGDR = \frac{\left(\frac{I_{CVC}}{I_{PD}}\right)_{max}}{\left(\frac{I_{CVC}}{I_{PD}}\right)_{min}} = \frac{\frac{I_{PDmax}}{I_{PDmax}}}{\frac{I_{CVC}}{I_{PDmax}}} \approx \left(\frac{I_{C2max}}{I_{C2max}}\right)^{4}.$$
(4.26)

Na osnovu (4.20) i (4.25), jednosmjerna transimpedansa T optičkog prijemnika prikazanog na slici 4.8 se može zapisati na sljedeći način:

$$T = \frac{V_{OUT} - V_{REF}}{I_{PD}} \approx \frac{I_{S6}I_{S7}I_{S8}I_{S9}I_{S10}}{I_{S1}I_{S2}I_{S3}I_{S4}I_{S5}} \left(\frac{I_{C1}}{I_{C2}}\right)^4 R_F, \qquad (4.27)$$

Transimpedansa T se može mijenjati varijacijom odnosa kontrolnih struja I_{CI} i I_{C2} . Dinamički opseg transimpedansi TDR dat je izrazom:

$$TDR = \frac{T_{max}}{T_{min}} \approx \frac{\left(\frac{I_{C1}}{I_{C2}}\right)^4}{\left(\frac{I_{C1}}{I_{C2}}\right)^4} = \frac{\left(\frac{I_{C1}}{I_{C2min}}\right)^4}{\left(\frac{I_{C1}}{I_{C2min}}\right)^4} = \left(\frac{I_{C2max}}{I_{C2min}}\right)^4 = CGDR.$$
(4.28)

Da bi se ostvario dinamički opseg TDR=CGDR=1000, za $I_{C2min}=20 \ \mu$ A najveća vrijednost kontrolne struje I_{C2} je svega $I_{C2max}\sim112.5 \ \mu$ A. Osjetljivost dT/dI_{C2} transimpedanse optičkog prijemnika sa slike 4.8 na promjene kontrolne struje I_{C2} četiri puta je veća u odnosu na osjetljivost optičkog prijemnika prikazanog na slici 4.7 i iznosi $dT/dI_{C2}=-4T/I_{C2}$. Dinamički opseg transimpedansi može biti reda nekoliko hiljada, bez specifičnih ograničenja radnog opsega korišćenih tranzistora. Napon inverzne polarizacije fotodiode dat je izrazom:

$$V_{PD} = V_{BE1} + V_{BE2} + V_{BE3} + V_{BE4}, ag{4.29}$$

i iznosi oko 3 V. Tako veliki napon V_{PD} inverzne polarizacije fotodiode značajno smanjuje kapacitivnost C_{PD} fotodiode. Kako bi se smanjio uticaj raspodijeljenih *RC* parametara u sklopu otpornika R_F , njegov polisilicijumski sloj treba da ima što manju površinu, odnosno, otpornost R_F treba da bude što manja. Cilj je ostvariti što veću transimpedansu sa što manjom otpornošću R_F za date vrijednosti kontrolnih struja I_{C1} i I_{C2} . Dakle, potrebno je da koeficijent $I_{S6}I_{S7}I_{S8}I_{S9}I_{S10}/(I_{S1}I_{S2}I_{S3}I_{S4}I_{S5})$ ima što veću vrijednost, relacija (4.27). Ukoliko se odabere da je $I_{S6}=I_{S7}=I_{S8}=I_{S9}=2I_{S1}=2I_{S2}=2I_{S3}=2I_{S3}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}=2I_{S1}=2I_{S2}=2I_{S1}$

$$I_{CVC} \approx 16 \left(\frac{I_{C1}}{I_{C2}}\right)^4 I_{PD},$$
 (4.30)

dok relacija (4.27) postaje:

$$T \approx 16 \left(\frac{I_{C1}}{I_{C2}}\right)^4 R_F$$
 (4.31)

Uzimajući u obzir konačnu vrijednost strujnog pojačanja β bipolarnih tranzistora i zanemarujući Early-jev efekat, dobija se precizniji izraz za zavisnost jednosmjerne izlazne struje I_{CVC} strujnog pojačavača sa promjenljivim pojačanjem od jednosmjerne struje fotodiode I_{PD} :

$$I_{CVC} \approx 16 \left[\frac{I_{C1} - \frac{I_{PD}}{1 + \beta_{5}}}{\frac{\beta_{6}}{1 + \beta_{6}} \left(I_{C2} + \frac{I_{CVC}}{\beta_{10}} \right)} - \frac{1}{\beta_{6}} \right]^{4} \frac{\beta_{5}}{1 + \beta_{5}} I_{PD} \approx 16 \left(\frac{I_{C1} - \frac{I_{PD}}{1 + \beta_{5}}}{\frac{\beta_{6}}{1 + \beta_{6}} I_{C2}} - \frac{1}{\beta_{6}} \right)^{4} \frac{\beta_{5}}{1 + \beta_{5}} I_{PD} .$$
(4.32)

Slika 4.8 Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na bazi modifikovane translinearne petlje sa bipolarnim tranzistorima.

Na osnovu prethodne relacije može se dobiti izraz za kontrolnu struju I_{C2} u funkciji od kontrolne struje I_{CI} , struje fotodiode I_{PD} i izlazne struje strujnog pojačavača I_{CVC} :

$$I_{C2} = \frac{I_{C1} - \frac{I_{PD}}{1 + \beta_5}}{\frac{1}{\beta_6} + \frac{1}{2} \sqrt[4]{\frac{1 + \beta_5}{\beta_5}} \frac{I_{CVC}}{I_{PD}}}.$$
(4.33)

Precizniji izraz za jednosmjernu transimpedansu T optičkog prijemnika prikazanog na slici 4.8 je:

$$T \approx 16 \left[\frac{I_{C1} - \frac{I_{PD}}{1 + \beta_5}}{\frac{\beta_6}{1 + \beta_6} \left(I_{C2} + \frac{I_{CVC}}{\beta_{10}} \right)} - \frac{1}{\beta_6} \right]^4 \frac{\beta_5}{1 + \beta_5} R_F, \qquad (4.34)$$

gdje su β_5 , β_6 i β_{10} strujna pojačanja bipolarnih tranzistora Q_5 , Q_6 i Q_{10} , respektivno. S obzirom da kroz bipolarni tranzistor Q_{10} teče konstantna jednosmjerna struja I_{CVC} =const., (4.20), strujno pojačanje β_{10} bipolarnog tranzistora Q_{10} je konstantno. Cilj je postići dinamički opseg pojačanja $CGDR=I_{PDmax}/I_{PDmun}$ reda nekoliko hiljada, a struja fotodiode I_{PD} teče kroz bipolarni tranzistor Q_5 , što znači da je strujno pojačanje β_5 bipolarnog tranzistora Q_5 promjenljivo. Na osnovu relacije (4.26), za dinamički opseg pojačanja CGDR reda nekoliko hiljada, dinamički opseg kontrolnih struja I_{C2max}/I_{C2min} je manji od deset. Kontrolna struja I_{C2} teče kroz bipolarni tranzistor

⁴ Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehn. na bazi TLP sa BJT-ovima 83

 Q_6 što znači da je strujno pojačanje β_6 bipolarnog tranzistora Q_6 približno konstantno. Uticaj konačne vrijednosti strujnog pojačanja β može se izbjeći upotrebom pristupa prikazanog u [61].

Kapacitivnost C_X na ulazu strujnog pojačavača sa promjenljivim pojačanjem (na bazi bipolarnog tranzistora Q_4) data je izrazom:

$$C_{X} = C_{B4} \approx C_{PD} + \frac{C_{BE4}C_{E4}}{C_{BE4} + C_{E4}} + \frac{C_{C4}(C_{BC4} + C_{BE5})}{C_{C4} + C_{BC4} + C_{BE5}} \approx C_{PD},$$
(4.35)

gdje je C_{PD} kapacitivnost fotodiode, C_{B4} ekvivalentna kapacitivnost na bazi bipolarnog tranzistora Q₄. C_{BE4} kapacitivnost baza-emitor bipolarnog tranzistora Q₄. C_{E4} ekvivalentna kapacitivnost na emitoru bipolarnog tranzistora Q₄, C_{C4} ekvivalentna kapacitivnost na kolektoru bipolarnog tranzistora Q₄, C_{BC4} kapacitivnost baza-kolektor bipolarnog tranzistora Q₄. dok je C_{BE5} kapacitivnost baza-emitor bipolarnog tranzistora Q₅. Ekvivalentna kapacitivnost C_{C4} na kolektoru bipolarnog tranzistora Q₄ data je izrazom:

$$C_{c_{4}} = C_{c_{N4}} + C_{RC1} + C_{BC5} + C_{BC6} + \frac{C_{BE5}C_{B4}}{C_{BE5} + C_{B4}} + \frac{C_{BE6}C_{B7}}{C_{BE6} + C_{B7}},$$
(4.36)

gdje je C_{CS4} kapacitivnost kolektor-podloga bipolarnog tranzistora Q_4 , C_{IC1} ulazna kapacitivnost kontrolnog strujnog izvora I_{C1} , C_{BC5} kapacitivnost baza-kolektor bipolarnog tranzistora Q_5 , C_{BC6} kapacitivnost baza-kolektor bipolarnog tranzistora Q_6 , C_{BE5} kapacitivnost baza-emitor bipolarnog tranzistora Q_5 , $C_{B4} \approx C_{PD}$ ekvivalentna kapacitivnost na bazi bipolarnog tranzistora Q_4 . C_{BE6} kapacitivnost baza-emitor bipolarnog tranzistora Q_6 i C_{B7} ekvivalentna kapacitivnost na bazi bipolarnog tranzistora Q_7 . Zbog kapacitivnosti nagomilanog tovara u bazama bipolarnih tranzistora Q_5 i Q_6 [35], [62]-[65], kapacitivnosti baza-emitor C_{BE5} i C_{BE6} bipolarnih tranzistora Q_5 i Q_6 su promjenljive i zavise od struje fotodiode I_{PD} i kontrolne struje I_{C2} , respektivno. Zbog toga je i ekvivalentna kapacitivnost C_{C4} na kolektoru bipolarnog tranzistora Q_4 takođe promjenljiva (4.36), i zavisi od struje fotodiode I_{PD} i kontrolne struje I_{C2} . Kako bi se izlazna struja I_{CIC} strujnog pojačavača održala konstantnom (4.20), promjena struje fotodiode I_{PD} zahtijeva proporcionalnu promjenu kontrolne struje I_{C2} , pa su i kapacitivnosti baza-emitor C_{BE5} i C_{BE6} veće. Izlazna kapacitivnost strujnog pojačavača C_2 predstavljena je ekvivalentnom kapacitivnošću C_{C10} na kolektoru bipolarnog tranzistora Q_{10} :

$$C_z = C_{C10},$$
 (4.37)

koja zavisi i od parametara konvertora struje u napon transimpedansnog pojačavača. Ovaj konvertor struje u napon ima istu strukturu kao i slučaju transimpedansnog pojačavača na bazi osnovne translinearne petlje, slika 4.7, pri čemu je $V_{REF}=V_{REF2}$. Ekvivalentnu kapacitivnost C_{B10} na bazi bipolarnog tranzistora Q_{10} , koja uključuje i kapacitivnost baza-emitor C_{BE10} bipolarnog tranzistora Q_{10} , treba uzeti u obzir prilikom frekventne analize. Zbog kapacitivnosti nagomilanog

4 Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehn. na bazi TLP sa BJT-ovima 84

tovara u bazi bipolarnog tranzistora Q_{10} [35], [62]-[65], kapacitivnost baza-emitor C_{BE10} bipolarnog tranzistora Q_{10} zavisi od jednosmjerne struje na izlazu naponom kontrolisanog strujnog pojačavača I_{CVC} . Samim tim, na ekvivalentnu kapacitivnost C_{B10} na bazi bipolarnog tranzistora Q_{10} može se uticati izborom jednosmjerne struje I_{CVC} na izlazu strujnog pojačavača. Na osnovu (4.20) zaključuje se da je ekvivalentnu kapacitivnost C_{B10} moguće podesiti odgovarajućim izborom otpornosti R_F . Ekvivalentne kapacitivnosti C_{C1} - C_{C3} i C_{C7} - C_{C9} na kolektorima diodno povezanih bipolarnih tranzistora Q_1 - Q_3 i Q_7 - Q_9 , respektivno, mogu se zanemariti zbog malih ulaznih otpornosti na kolektorima (bazama) tih bipolarnih tranzistora.

Procedura odredivanja vrijednosti kontrolne struje I_{C2} i jednosmjerne transimpedanse T za datu jednosmjernu struju fotodiode I_{PD} je sljedeća:

- Jednosmjerna struja I_{CVC} na ulazu konvertora struje u napon računa se na osnovu relacije (4.20). Za otpornost $R_F=20 \text{ k}\Omega$, jednosmjerna ulazna struja I_{CVC} konvertora struje u napon je $I_{CVC}=25 \mu A$.
- Vrijednost kontrolne struje I_{C2} se računa prema relaciji (4.30) za datu struju fotodiode I_{PD} i za odgovarajuću kontrolnu struju I_{C1} =const. Za preciznije izračunavanje kontrolne struje I_{C2} uzimajući u obzir konačnu vrijednost strujnog pojačanja β bipolarnih tranzistora, potrebno je koristiti relaciju (4.33).
- Izračunata kontrolna struja I_{C2} određuje jednosmjernu transimpedansu T za datu jednosmjernu struju fotodiode I_{PD} prema relaciji (4.31). Za preciznije izračunavanje jednosmjerne transimpedanse T uzimajući u obzir konačnu vrijednost strujnog pojačanja β bipolarnih tranzistora, potrebno je koristiti relaciju (4.34).

Predloženi optički prijemnik namijenjen je za struje fotodiode 40 nA< I_{PD} <300 μA. Za najmanju struju fotodiode od interesa I_{PDmin} =40 nA, uzimajući u obzir da je I_{CI} =50 μA, na osnovu relacije (4.30), dobija se I_{C2min} ≈20 μA. Ovoj vrijednosti kontrolne struje I_{C2} odgovara najveća transimpedansa T_{max} =12.5 MΩ, (4.31). Za najveću struju fotodiode od interesa I_{PDmax} =300 μA, uzimajući u obzir da je I_{CI} =50 μA, na osnovu relacije (4.30), dobija se I_{C2max} ≈186 μA. Ovoj vrijednosti kontrolne struje I_{C2} odgovara najmanja transimpedansa T_{min} =1.66 kΩ, (4.31). Međutim, korišćenjem preciznijeg matematičkog modela (4.32)-(4.34) pokazuje se da je dovoljno uzeti I_{C2max} =180 μA. Dakle, opseg kontrolne struje I_{C2} optičkog prijemnika je 20 μA< I_{C2} <180 μA, ako je I_{CI} =50 μA. Drugim riječima, za struje fotodiode 40 nA< I_{PD} <300 μA, strujni pojačavač sa promjenljivim pojačanjem će uvijek generisati jednosmjernu struju I_{CPC} =25 μA na svom izlazu (na ulazu konvertora struje u napon), prema prethodno opisanoj proceduri. Za jednosmjerne struje fotodiode I_{PD} <40 nA (što nije pogodno zbog malog frekventnog opsega), držeći kontrolnu struju u granicama 20 μA< I_{C2} <180 μA, jednosmjerna struja na ulazu konvertora struje u napon bi bila I_{CPC} <25 μA (4.30). Jasno je da u slučaju najmanje struje fotodiode od interesa I_{PDmin} =40 nA (maksimalna transimpedansa

⁴ Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehn. na bazi TLP sa BJT-ovima 85

 $T=12.5 \text{ M}\Omega$ od interesa), strujno pojačanje I_{CVC}/I_{PD} strujnog pojačavača definisano relacijom (4.30) ima najveću vrijednost $I_{CVC}/I_{PD}=16(I_{CI}/I_{C2})^4=625$. U slučaju neosvijetljene fotodiode, struja fotodiode I_{PD} bila bi jednaka struji saturacije, što iznosi manje od 1 nA. U najkritičnijem slučaju, kada je strujno pojačanje najveće, ulazna struja I_{CVC} konvertora struje u napon bi bila $I_{CVC}=16(I_{CI}/I_{C2})^4I_{PD}$ <625 nA što odgovara opsegu izlaznog napona optičkog prijemnika V_{OUT} - $V_{REF}=R_FI_{CVC}$ <12.5 mV, i može se zanemariti.

4.4 Naponski ofset

Naponski ofset optičkog prijemnika definiše se kao razlika napona na izlazu V_{OUT} i referentnog napona V_{REF} kada fotodioda nije osvijetljena. Osnovni uzrok naponskog ofseta prikazanog optičkog prijemnika za velike transimpedanse T je bazna struja I_{B4} bipolarnog tranzistora Q_4 , slika 4.8. Imajući u vidu da strujno pojačanje β ima konačnu vrijednost, bazna struja I_{B4} se ne može zanemariti, naročito kada su u pitanju velike transimpedanse T (male struje fotodiode I_{PD}). Dakle, struja na ulazu naponom kontrolisanog strujnog pojačavača (struja emitora I_{E5} bipolarnog tranzistora Q_5) nije jednaka samo struji fotodiode I_{PD} , već sumi struja fotodiode I_{PD} i struje baze I_{B4} bipolarnog tranzistora Q_4 , $I_{E5}=I_{PD}+I_{B4}$. Sada se jednosmjerni napon na izlazu optičkog prijemnika V_{OUT} može zapisati kao:

$$V_{OUT} = V_{REF} + T(I_{PD} + I_{B4}).$$
(4.38)

Naponski ofset V_{OFF} optičkog prijemnika, koji potiče od bazne struje I_{B4} bipolarnog tranzistora Q_4 , iznosi:

$$V_{OFF} = V_{OUT} - V_{REF} \xrightarrow{I_{PD} = 0} TI_{B4}.$$

$$(4.39)$$

Za transimpedansu T=1 M Ω i struju baze $I_{B4}=0.5$ µA bipolarnog tranzistora Q₄ ($I_{C1}=50$ µA), naponski ofset bi prema (4.39) imao veoma veliku vrijednost, $V_{OFF}=0.5$ V. Iz tog razloga, bazna struja I_{B4} bipolarnog tranzistora Q₄, slika 4.8, mora biti eliminisana iz ulazne struje strujnog pojačavača I_{E5} . U cilju rješavanja opisanog problema, uvedeno je kolo prikazano na slici 4.9. Bipolarni tranzistori Q_{1B}-Q_{5B} identični su bipolarnim tranzistorima Q_{1A}-Q_{5A}. Osim tranzistora Q_{1B}-Q_{5B}, uveden je još jedan kontrolni strujni izvor I_{C1} , kao i *wide-swing* strujno ogledalo [35], [66], [67] koje čine MOSFET-ovi M₁₉-M₂₂ sa polarizacionim naponom V_{B1} . S obzirom da kroz bipolarne tranzistore Q_{4A} i Q_{4B} teče ista jednosmjerna struja I_{C1} , i da su naponi na njihovim emitorima, kolektorima i bazama približno jednaki, bazne struje ovih bipolarnih tranzistora su takođe jednake, $I_{B4A}=I_{B4B}$. Ulazna struja strujnog ogledala koje čine MOSFET-ovi M₁₉-M₂₂ jednaka je baznoj struji I_{B4B} bipolarnog tranzistora Q_{4B}. Slijedi da će strujno ogledalo dati na svom izlazu struju jednaku baznoj struji I_{B4A} bipolarnog tranzistora Q_{4A}. To znači da će ulazna struja strujnog pojačavača (struja emitora I_{E5} bipolarnog tranzistora Q₅, slika 4.8) biti jednaka samo struji fotodiode I_{PD} . Na taj način naponski ofset (4.39) je eliminisan.

Slika 4.9 Pojednostavljena šema optičkog prijemnika sa promjenljivom transimpedansom na bazi modifikovane translinearne petlje sa bipolarnim tranzistorima i kolom za eliminaciju naponskog ofseta.

Osim prethodno opisanog naponskog ofseta, postoji i naponski ofset koji unosi operacioni pojačavač u sklopu konvertora struje u napon. Taj ofset je konstantan, ima mnogo manju vrijednost od (4.39) i ne zavisi od transimpedanse T optičkog prijemnika. Struja fotodiode koja protiče kada fotodioda nije osvijetljena (inverzna struja zasićenja PIN strukture) takođe može uzrokovati naponski ofset optičkog prijemnika. Međutim, čak i slučaju fotodioda čija je aktivna površina velika, ova struja ima veoma male vrijednosti, i njen uticaj na naponski ofset optičkog prijemnika se može zanemariti, čak i za velike transimpedanse T.

4.5 Kompletna šema

Kompletna šema optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima prikazana je na slici 4.10. Naponom kontrolisan strujni izvor I_{C2} sastoji se od strujnog prenosnika prve generacije (CCI), otpornika R_2 i kontrolnog napona V_{C2} . Strujni prenosnik prve generacije čine MOSFET-ovi M₁-M₆ i bipolarni tranzistori Q₁₁ i Q₁₂. Strujno ogledalo koje čine MOSFET-ovi M₇-M₁₀ sa polarizacionim naponom V_{B2} ima ulogu promjene smjera struje koju daje naponom kontrolisan strujni izvor I_{C2} . Struja naponom kontrolisanog strujnog izvora I_{C2} data je izrazom:

$$I_{C2} = \frac{V_{C2}}{R_2} \,. \tag{4.40}$$

slika 4.10 Kompletna električna šema optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima.

Naponom kontrolisan strujni izvor I_{CI} sastoji se od strujnog prenosnika prve generacije, otpornika R_I i kontrolnog napona V_{CI} . Strujni prenosnik prve generacije čine MOSFET-ovi M_{11} - M_{18} u formi tro-izlaznog *wide-swing* strujnog ogledala i bipolarni tranzistori Q_{13} i Q_{14} . Struja naponom kontrolisanog strujnog izvora I_{CI} data je izrazom:

$$I_{C1} = \frac{V_{C1}}{R_1} \,. \tag{4.41}$$

Jedan izlaz strujnog ogledala (drejn MOSFET-a M_{14}) je direktno povezan na ulaz translinearne petlje (kolektor bipolarnog tranzistora Q_{4A}), dok je drugi izlaz strujnog ogledala (drejn MOSFET-a M_{13}) vezan za replika niz bipolarnih tranzistora Q_{1B} - Q_{4B} (kolektor bipolarnog tranzistora Q_{4B}). Uzimajući u obzir da su otpornosti R_1 i R_2 jednake i zanemarujući bazne struje i *Early*-jev efekat, transimpedansa T data relacijom (4.31) može se izraziti i na sljedeći način:

$$T \approx 16 \left(\frac{V_{C1}}{V_{C2}}\right)^4 R_F.$$
(4.42)

Operacioni pojačavač u sklopu konvertora struje u napon čine ulazni diferencijalni par od bipolarnih tranzistora Q_{15} i Q_{16} , sa aktivnim opterećenjem u vidu kaskodnog strujnog ogledala koga čine MOSFET-ovi M_{23} - M_{26} . Polarizacija ulaznog stepena operacionog pojačavača se vrši preko MOSFET-a M_{27} i polarizacionog napona V_{B3} . Izlazni stepen operacionog pojačavača predstavlja bipolarni tranzistor Q_{17} u formi *emitter follower*-a. Ekvivalentnu kapacitivnost C_{C10} na invertujućem ulazu operacionog pojačavača dominantno čini kapacitivnost kolektor-podloga C_{CS10} bipolarnog tranzistora Q_{10} . U cilju smanjenja kapacitivnosti C_{CS10} , poželjno je odabrati što veću vrijednost referentnog napona V_{REF} kako bi se povećao napon inverzne polarizacije spoja kolektor-podloga bipolarnog tranzistora Q_{10} . Kako bi se redukovao uticaj kapacitivnosti na izlazu optičkog prijemnika, uveden je bafer koga čini operacioni pojačavač u konfiguraciji jediničnog pojačavača. Ovaj operacioni pojačavač čine ulazni diferencijalni par od bipolarnih tranzistora Q_{18} i Q_{19} , sa aktivnim opterećenjem u vidu kaskodnog strujnog ogledala koga čine MOSFET-ovi M_{28} - M_{31} . Polarizacija ulaznog stepena operacionog pojačavač se vrši preko MOSFET-a M_{32} i polarizacionog napona V_{B3} . Izlazni stepen operacionog pojačavača je klase A i sastoji se od bipolarnih tranzistora Q_{20} i Q_{21} u *Darlington*-ovoj konfiguraciji i strujnog izvora koga čine MOSFET M_{33} i polarizacioni napon V_{B3} .

4.6 Frekventni odziv i stabilnost

Prenosna karakteristika optičkog prijemnika, dobijena na osnovu modela za male signale prikazanog na slici 4.11, data je izrazom:

$$T(s) = \frac{v_{out}}{i_{pd}} = \frac{i_{cvc}}{i_{pd}} \frac{v_{out}}{i_{cvc}} = A_{VCCA}(s) A_{CVC}(s), \qquad (4.43)$$

gdje je:

$$A_{VCCA}(s) = \frac{i_{eve}}{i_{pd}} \approx \frac{g_{m4}g_{m9}g_{m10}}{4\left\{g_{m9}C_{pD}C_{C4} + 4\left[\left(\frac{1}{r_{er4}} + \frac{1}{r_{\pi5}}\right)C_{pD} + \left(g_{m5} + \frac{1}{4r_{\pi4}}\right)C_{C4}\right]C_{B10}\right\}\left(s^{2} + s\frac{\omega_{0IVCA}}{Q_{VCCA}} + \omega_{0VCCA}^{2}\right), (4.44)$$

prenosna karakteristika naponom kontrolisanog strujnog pojačavača na bazi translinearne petlje, dok je:

$$A_{CVC}(s) = \frac{v_{out}}{i_{cvc}} \approx \frac{A_0 \omega_h}{C_F + C_{C10}} \cdot \frac{1}{s^2 + s \frac{\omega_{0CVC}}{Q_{CVC}} + \omega_{0CVC}^2}, \qquad (4.45)$$

prenosna karakteristika konvertora struje u napon. Na osnovu (4.43)-(4.45) prenosna karakteristika optičkog prijemnika data je sljedećim izrazom:

$$T(s) \approx \frac{A_0 \omega_b g_{m4} g_{m9} g_{m10}}{4(C_F + C_{C10}) \left\{ g_{m9} C_{PD} C_{C4} + 4 \left[\left(\frac{1}{r_{cc4}} + \frac{1}{r_{\pi 5}} \right) C_{PD} + \left(g_{m5} + \frac{1}{4r_{\pi 4}} \right) C_{C4} \right] C_{B10} \right\}}$$

$$\frac{1}{\left(s^{2} + s\frac{\omega_{0VCCA}}{Q_{VCCA}} + \omega_{0VCCA}^{2}\right)\left(s^{2} + s\frac{\omega_{0CVC}}{Q_{CVC}} + \omega_{0CVC}^{2}\right)}$$
(4.46)

Operacioni pojačavač u sklopu konvertora struje u napon modelovan je prenosnom karakteristikom koja ima dominantni pol ω_b i jednosmjerno pojačanje A_0 . Prirodne učestanosti ω_{DVCCA} i ω_{DCVC} , kao i faktori Q_{VCCA} i Q_{CVC} dati su sljedećim izrazima:

$$\omega_{0VCCA} = \frac{1}{2} \sqrt{\frac{g_{m4}g_{m5}g_{m9}}{g_{m9}C_{PD}C_{C4} + 4\left[\left(\frac{1}{r_{ce4}} + \frac{1}{r_{\pi5}}\right)C_{PD} + \left(g_{m5} + \frac{1}{4r_{\pi4}}\right)C_{C4}\right]C_{B10}}}{\frac{1}{2V_{T}} \sqrt{\frac{I_{C1}I_{C2}I_{PD}}{I_{C2}C_{PD}C_{C4} + 4\left[\left(\frac{V_{T}}{V_{A}}C_{PD} + \frac{C_{C4}}{4\beta_{4}}\right)I_{C1} + \left(\frac{C_{PD}}{\beta_{5}} + C_{C4}\right)I_{PD}\right]C_{B10}}},$$
(4.47)

$$\omega_{0CVC} = \sqrt{\frac{A_0 \omega_h}{R_F \left(C_F + C_{C10} \right)}}, \qquad (4.48)$$

$$\mathcal{Q}_{VCCA} = \frac{1}{2} \frac{\sqrt{\frac{g_{m1}g_{m9}}{g_{m5}}} \left[g_{m9}C_{PD}C_{C4} + 4 \left[\left(\frac{1}{r_{ce4}} + \frac{1}{r_{\pi5}} \right) C_{PD} + \left(g_{m5} + \frac{1}{4r_{\pi4}} \right) C_{C4} \right] C_{B10} \right]}{g_{m4}C_{B10} + \frac{g_{m9}}{g_{m5}} \left[\left(\frac{1}{r_{ce4}} + \frac{1}{r_{\pi5}} \right) C_{PD} + \left(g_{m5} + \frac{1}{4r_{\pi4}} \right) C_{C4} \right]} \right] = \frac{1}{2} \frac{\sqrt{I_{C1}I_{C2}I_{PD}} \left[I_{C2}C_{PD}C_{C4} + 4 \left[\left(\frac{V_T}{V_A}C_{PD} + \frac{C_{C4}}{4\beta_4} \right) I_{C1} + \left(\frac{C_{PD}}{\beta_5} + C_{C4} \right) I_{PD} \right] C_{B10} \right]}{I_{C1}I_{PD}C_{B10} + I_{C2} \left[\left(\frac{V_T}{V_A}C_{PD} + \frac{C_{C4}}{4\beta_4} \right) I_{C1} + \left(\frac{C_{PD}}{\beta_5} + C_{C4} \right) I_{PD} \right]}, \quad (4.49)$$

$$Q_{CVC} = \frac{\sqrt{A_0}\omega_b R_F (C_F + C_{C10})}{1 + A_0 \omega_b R_F C_F},$$
(4.50)

gdje su $g_{m4}=I_{CI}/V_T$, $g_{m5}=I_{PD}/V_T$, $g_{m9}=I_{C2}/V_T$ i $g_{m10}=I_{CVC}/V_T$ transkonduktanse bipolarnih tranzistora Q_4 , Q_5 , Q_9 i Q_{10} , respektivno, $r_{\pi 4}=\beta_4/g_{m4}$ i $r_{\pi 5}=\beta_5/g_{m5}$ ulazne otpornosti bipolarnih tranzistora Q_4 i Q_5 , respektivno, β_4 i β_5 su strujna pojačanja bipolarnih tranzistora Q_4 i Q_5 , $r_{ce4}=V_{.4}/I_{C1}$ je izlazna otpornost bipolarnog tranzistora Q_4 , V_T je termički napon, dok je V_A Early-jev napon bipolarnih tranzistora Q_4 je takođe konstantno. Zanemarujući struje baza bipolarnih tranzistora Q_1 - Q_4 i Q_6 - Q_9 , jednosmjerne struje kolektora bipolarnih tranzistora Q_1 - Q_4 jednake su kontrolnoj struji I_{C1} , dok su

Slika 4.11 Model za male signale optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima.

jednosmjerne struje kolektora bipolarnih tranzistora Q₆-Q₉ jednake kontrolnoj struji I_{C2} . Zbog toga su struja pojačanja, transkonduktanse, ulazne otpornosti i izlazne otpornosti ove dvije grupe bipolarnih tranzistora međusobno jednaki: $\beta_1 = \beta_2 = \beta_3 = \beta_4$, $\beta_6 = \beta_7 = \beta_8 = \beta_9$, $g_{m1} = g_{m2} = g_{m3} = g_{m4} = I_{C1}/V_T$, $g_{m6} = g_{m7} = g_{m8} = g_{m9} = I_{C2}/V_T$, $r_{\pi 1} = r_{\pi 2} = r_{\pi 3} = r_{\pi 4} = \beta_4 V_T/I_{C1}$, $r_{\pi 6} = r_{\pi 7} = r_{\pi 8} = r_{\pi 9} = \beta_9 V_T/I_{C2}$, $r_{ce1} = r_{ce2} = r_{ce3} = r_{ce4} = V_A/I_{C1}$, i $r_{ce6} = r_{ce7} = r_{ce8} = r_{ce9} = V_A/I_{C2}$. Ekvivalenta kapacitivnost C_{C4} na kolektoru bipolarnog tranzistora Q₄ data je relacijom (4.36). Ekvivalentna kapacitivnost na kolektoru bipolarnog tranzistora Q₁₀ je:

$$C_{C10} = C_{CS10} + C_{OAI} + C_{RF}, (4.51)$$

gdje je C_{CSI0} kapacitivnost kolektor-podloga bipolarnog tranzistora Q_{10} , C_{OAI} ulazna kapacitivnost operacionog pojačavača u sklopu konvertora struje u napon, dok je C_{RF} ekvivalentna kapacitivnost polisilicijumskog sloja otpornika R_F gledano sa strane invertujućeg ulaza operacionog pojačavača.

Uticaj naponom kontrolisanog strujnog pojačavača na prenosnu karakteristiku T(s) može se posmatrati preko prirodne učestanosti ω_{DICCA} (4.47) i faktora Q_{ICCA} (4.49), dok se uticaj konvertora struje u napon može analizirati preko prirodne učestanosti ω_{DCIC} (4.48) i faktora Q_{CIC} (4.50). Kada su u pitanju frekventni opseg i stabilnost optičkog prijemnika, potrebno je obratiti pažnju na sljedeće:

• Za $0 < Q_{VCCA} < 0.5$ i/ili $0 < Q_{CFC} < 0.5$, odgovarajući dio prenosne karakteristike optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (4.46) koji potiče od

strujnog pojačavača i/ili konvertora struje u napon ima dva realna i različita pola. Nema maksimuma u odgovarajućem dijelu frekventne karakteristike T(s) koji potiče od strujnog pojačavača i/ili konvertora struje u napon. Nema prekoračenja u vremenskom odzivu na pobudu odskočnog tipa koji potiče od strujnog pojačavača i/ili konvertora struje u napon. Frekventni opseg strujnog pojačavača i/ili konvertora struje u napon. Frekventni opseg strujnog pojačavača i/ili konvertora struje u napon. $f_{VCCA}\approx(\omega_{0VCCA}Q_{VCCA})/2\pi$ (4.47) ili $f_{CVC}=(\omega_{0CVC}Q_{CVC})/2\pi$ (4.48).

- Za $Q_{VCCA}=0.5$ i/ili $Q_{CVC}=0.5$, odgovarajući dio prenosne karakteristike optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (4.46) koji potiče od strujnog pojačavača i/ili konvertora struje u napon ima dvostruki realan pol. Nema maksimuma u odgovarajućem dijelu frekventne karakteristike T(s) koji potiče od strujnog pojačavača i/ili konvertora struje u napon. Frekventni opseg strujnog pojačavača i/ili konvertora struje u napon je odreden frekvencijom odgovarajućeg dvostrukog pola $f_{0VCCA}=\omega_{0VCCA}/2\pi$ (4.47) ili $f_{0CVC}=\omega_{0CVC}/2\pi$ (4.48).
- Za Q_{VCCA} >0.5 i/ili Q_{CVC} >0.5, odgovarajući dio prenosne karakteristike optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (4.46) koji potiče od strujnog pojačavača i/ili konvertora struje u napon ima par konjugovano kompleksnih polova čija je apsolutna vrijednost data relacijama (4.47), (4.48). Za $0.5 < Q_{VCCA} < 0.707$ i/ili $0.5 < Q_{CVC} < 0.707$ nema maksimuma u odgovarajućem dijelu frekventne karakteristike T(s) koji potiče od strujnog pojačavača i/ili konvertora struje u napon. Za Q_{VCCA} >0.707 i/ili Q_{CVC} >0.707 postoji maksimum u odgovarajućem dijelu frekventne karakteristike T(s) koji potiče od strujnog pojačavača i/ili konvertora struje u napon. Postojaće prekoračenje u vremenskom odzivu na pobudu odskočnog tipa koje potiče od strujnog pojačavača i/ili konvertora struje u napon. Frekventni opseg strujnog pojačavača i/ili konvertora struje u napon je određen frekvencijom odgovarajućeg dvostrukog pola $f_{0VCCA} = \omega_{0VCCA}/2\pi (4.47)$ ili $f_{0CVC} = \omega_{0CVC}/2\pi (4.48)$.

Zbog male kapacitivnosti C_{C10} na kolektoru bipolarnog tranzistora Q_{10} (~10 fF), podešavanje faktora Q_{CVC} (4.50), umetanjem kompenzacionog kondenzatora C_F [7], tako da bude zadovoljeno $0.5 < Q_{CVC} < 0.707$, ne utiče značajno na frekvenciju dvostrukog pola $f_{0CVC} = \omega_{0CVC}/2\pi$ (4.48) konvertora struje u napon. Na taj način, frekvencija dvostrukog pola $f_{0CVC} = \omega_{0CVC}/2\pi$ (4.48) konvertora struje u napon može imati velike vrijednosti. Sa druge strane, pošto je frekventni opseg fotodiode značajno veći od frekventnog opsega naponom kontrolisanog strujnog pojačavača, frekventni odziv optičkog prijemnika određen je frekventnim karakteristikama naponom kontrolisanog strujnog pojačavača.

Budući da se struja fotodiode I_{PD} mijenja u širokom opsegu (40 nA $< I_{PD}<$ 300 µA), kao i kontrolna struja I_{C2} (20 µA $< I_{C2}<$ 180 µA), parametri koji zavise od ovih struja (ekvivalentna kapacitivnost C_{C4} na kolektoru bipolarnog tranzistora Q_4 i strujno pojačanje β_5 bipolarnog tranzistora Q_5) se takođe mijenjaju u širokom opsegu. Sa druge strane, ekvivalentna kapacitivnost C_{B10} na bazi bipolarnog tranzistora Q_{10} zavisi od struje I_{CIC} na ulazu konvertora

⁴ Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehn. na bazi TLP sa BJT-ovima 92

struje u napon. Dakle, dalje uprošćavanje modela datog relacijama (4.46)-(4.50) predstavlja veoma složen zadatak. Prirodna učestanost ω_{hVCCA} (4.47) i faktor Q_{VCCA} (4.49) su složene funkcije više promjenljivih veličina, pa je veoma teško analitički izvesti potrebne zaključke o frekventnom odzivu i stabilnosti. Da bi se utvrdilo na koji način kontrolne struje I_{CI} i I_{C2} utiču na frekventni odziv i stabilnost naponom kontrolisanog strujnog pojačavača, odnosno, kompletnog optičkog prijemnika, urađene su simulacije u MATLAB-u. U MATLAB simulacijama, kontrolna struja I_{C2} računata je na osnovu relacije (4.33), pri čemu je struja fotodiode u granicama 40 nA<IPD<300 μA, kontrolna struja ICI=50 μA=const. i izlazna struja strujnog pojačavača $I_{CVC}=25 \mu A$. Za tako dobijenu kontrolnu struju I_{C2} i struju fotodiode I_{PD} , prirodna učestanost ω_{hVCCA} i faktor Q_{VCCA} su računati na osnovu relacija (4.47) i (4.49), respektivno. Tipična vrijednost Early-jevog napona u 0.6 µm BiCMOS silicijumskoj tehnologiji je V_A=25 V. Kako je kontrolna struja I_{CI} konstantna, tipična vrijednost strujnog pojačanja β_{I} bipolarnog tranzistora Q_{4} u 0.6 µm BiCMOS silicijumskoj tehnologiji je $\beta_4=90=const$. Cilj je ostvariti dinamički opseg transimpedansi $TDR = T_{max}/T_{min} = I_{PDmax}/I_{PDmin} = CGDR$ (4.26), (4.28), reda nekoliko hiljada, što znači da se jednosmjerna struja fotodiode I_{PD} mijenja u istom iznosu, pa je i strujno pojačanje β_5 bipolarnog tranzistora Q₅ takođe promjenljivo. Iz tog razloga, u simulacijama se β_5 mijenja linearno sa strujom fotodiode I_{PD} u granicama $30 < \beta_5 < 90$. Ekvivalentna kapacitivnost C_{CJ} na kolektoru bipolarnog tranzistora Q_4 zavisi od struje fotodiode I_{PD} i kontrolne struje I_{C2} zbog kapacitivnosti nagomilanog tovara u bazama bipolarnih tranzistora Q5 i Q6. Za manje vrijednosti transimpedanse T, veće su struja fotodiode I_{PD} i kontrolna struja I_{C2} , pa su i kapacitivnosti bazaemitor C_{BES} i C_{BE6} bipolarnih tranzistora Q_5 i Q_6 veće, i obratno. Iz prethodno opisanog razloga, u simulacijama se ekvivalentna kapacitivnost C_{CI} mijenja linearno sa strujom fotodiode I_{PD} u granicama 5 fF < β_5 < 60 fF. Kapacitivnost nagomilanog tovara u bazi bipolarnog tranzistora Q₁₀ zavisi od struje I_{CVC} na ulazu konvertora struje u napon, pa je i ekvivalentna kapacitivnost C_{BIO} na bazi bipolarnog tranzistora Q_{10} funkcija struje I_{CVC} . Većim vrijednostima struje I_{CVC} odgovara veća vrijednost kapacitivnosti C_{B10} , i obratno. Ukoliko se poveća struja I_{CVC} , potrebno je proporcionalno smanjiti otpornost R_F kako bi razlika između napona V_{OUT} na izlazu optičkog prijemnika i referentnog napona V_{REF} bila konstantna, (4.20). Tipična vrijednost kapacitivnosti fotodiode je C_{PD} =200 fF.

Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} i zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom (20 fF< C_{B10} <60 fF), simulirane u MATLAB-u, prikazane su na slikama 4.12 i 4.13, respektivno. Prirodna učestanost ω_{0VCCA} je rastuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . Uticaj ekvivalentne kapacitivnosti C_{B10} na prirodnu učestanost ω_{0VCCA} je uočljiv samo za male transimpedanse T (za relativno veliku struju fotodiode I_{PD} i veliku kontrolnu struju I_{C2}). Sa druge strane, uticaj ekvivalentne kapacitivnosti C_{B10} na prirodnu učestanost ω_{0VCCA} za srednje i velike transimpedanse T se može zanemariti. Frekvencija pola $f_{0VCCA} = \omega_{0VCCA}/2\pi$ je mnogo veća od frekventnog opsega fotodiode za male i srednje transimpedanse T i za veoma širok opseg

Slika 4.12 Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom.

Slika 4.13 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom.

ekvivalentnih kapacitivnosti C_{B10} . Ukoliko faktor Q_{VCCA} nije mnogo manji od 0.5, pol prenosne karakteristike naponom kontrolisanog strujnog pojačavača koji definišu prirodna učestanost ω_{0VCCA} i faktor Q_{VCCA} za male i srednje transimpedanse T je mnogo veći od frekventnog opsega fotodiode, bez obzira na vrijednost kapacitivnosti C_{B10} . Faktor Q_{VCCA} je opadajuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . U najvećem dijelu opsega kontrolne struje I_{C2} , uticaj ekvivalentne kapacitivnosti C_{B10} na faktor Q_{VCCA} je značajan, što je naročito izraženo za najveće vrijednosti faktora Q_{VCCA} . Faktor Q_{VCCA} opada sa porastom ekvivalentne kapacitivnosti C_{B10} (sa porastom konstantne jednosmjerne struje I_{CVC} , odnosno, sa smanjenjem otpornosti R_F).

Zavisnost prirodne učestanosti ω_{0VCCA} od odnosa kontrolnih struja I_{C2}/I_{C1} i zavisnost faktora Q_{VCCA} od odnosa kontrolnih struja I_{C2}/I_{C1} , sa kontrolnom strujom I_{C1} (50 μ A $< I_{C1}<$ 150 μ A) kao parametrom, simulirane u MATLAB-u, prikazane su na slikama 4.14 i 4.15, respektivno. Kontrolna struja I_{C1} uzima jednu od tri vrijednosti, što znači da je potrebno mijenjati i opseg kontrolne struje I_{C2} , relacija (4.33), (20 μ A $< I_{C2}<$ 180 μ A za $I_{C1}=$ 50 μ A, 40 μ A $< I_{C2}<$ 360 μ A za $I_{C1}=$ 100 μ A, i 60 μ A $< I_{C2}<$ 540 μ A za $I_{C1}=$ 150 μ A). Iz prethodnog razloga, za nezavisnu promjenljivu uzet je odnos kontrolnih struja I_{C2}/I_{C1} umjesto kontrolne struje I_{C2} . Prirodna učestanost ω_{0VCCA} je rastuća funkcija u najvećem dijelu opsega odnosa kontrolnih struja I_{C2}/I_{C1} . Uticaj kontrolne struje I_{C1} na prirodnu učestanost ω_{0VCCA} je veoma izražen. Prirodna učestanost ω_{0VCCA} se povećava sa povećanjem kontrolne struje I_{C1} . Uticaj kontrolne struje I_{C1} na faktor Q_{VCCA} je evidentan. Medutim, najveće vrijednosti faktora Q_{VCCA} su približno jednake za različite kontrolne struje I_{C1} . Dakle, promjena kontrolne struje I_{C1} ne ugrožava stabilnost optičkog prijemnika.

Prirodna učestanost ω_{0VCCA} i faktor Q_{VCCA} zavise od kapacitivnosti fotodiode C_{PD} . Za veće vrijednosti kapacitivnosti fotodiode C_{PD} , prirodna učestanost ω_{0VCCA} se smanjuje, dok se faktor Q_{VCCA} ne mijenja značajno. Negativan uticaj kapacitivnosti fotodiode na prirodnu učestanost ω_{0VCCA} se može izbjeći povećanjem kontrolne struje I_{CI} .

Kada je u pitanju frekventni opseg i stabilnost, treba naglasiti sljedeće bitne karakteristike optičkog prijemnika:

- Povećanjem ekvivalentne kapacitivnosti C_{B10} na bazi bipolarnog tranzistora Q_{10} (povećanjem struje I_{CVC} na ulazu konvertora struje u napon), faktor Q_{VCCA} se smanjuje. dok se frekventni opseg optičkog prijemnika ne ugrožava.
- Povećanjem kontrolne struje I_{CI} , povećava se prirodna učestanost ω_{0VCCA} , dok se faktor Q_{VCCA} značajno ne mijenja, odnosno, ne ugrožava se stabilnost optičkog prijemnika.

Prethodne dvije osobine su veoma značajne u dizajnu optoelektronskih integrisanih kola. Kod prikazanog optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima moguće je povećati stabilnost bez značajnog uticaja na frekventni opseg, ili, povećati frekventni opseg ne ugrožavajući stabilnost sistema. Osim toga, najveći faktor Q_{VCCA} javlja se za najveće transimpedanse T, što nije slučaj kod klasičnih optičkih prijemnika sa promjenljivom

Slika 4.14 Zavisnost prirodne učestanosti ω_{0VCCA} od odnosa kontrolnih struja I_{C2}/I_{C1} , sa kontrolnom strujom I_{C1} kao parametrom.

Slika 4.15 Zavisnost faktora Q_{WCA} od odnosa kontrolnih struja I_{CP}/I_{CI} , sa kontrolnom strujom I_{CI} kao parametrom.

4 Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehn. na bazi TLP sa BJT-ovima 96

transimpedansom na bazi prekidačkih tehnika [3], [7]. U cilju proširenja frekventnog opsega optičkog prijemnika prikazanog u [15], [16], uveden je dodatni jednosmjerni strujni izvor čime je povećan šum optičkog prijemnika. Kako bi se optimizovao i frekventni opseg i šum ovog optičkog prijemnika, uvedeno je i CSE (*Capacitive Speed Enhancement*) kolo [15], [16]. Sa druge strane, frekventni opseg predstavljenog optičkog prijemnika se može povećati podešavanjem vrijednosti konstantne struje strujnog izvora I_{C1} koji je sastavni dio naponom kontrolisanog strujnog pojačavača, ne ugrožavajući na taj način stabilnost sistema. Biće pokazano da šum predstavljenog optičkog prijemnika ne zavisi od kontrolne struje I_{C1} .

4.7 Šum

Model za male signale sa generatorima šuma optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima prikazan je na slici 4.16 [2], [62], [63], [68]-[71]. Prilikom izvođenja srednje kvadratne vrijednosti šuma na izlazu optičkog prijemnika $v_{i,a}^2$, sve kapacitivnosti koje unosi translinearna petlja sa bipolarnim tranzistorima Q_1 - Q_{10} su zanemarene, u cilju izbjegavanja izuzetno složenog matematičkog modela višeg reda. Šum koji unose naponom kontrolisani strujni izvori I_{C1} i I_{C2} modelovan je strujnim generatorima i_{a1}^2 i i_{e2}^2 , respektivno. Šum koji unosi fotodioda modelovan je strujnim generatorom i_{a1}^2 [2], dok je šum koji potiče od strujnog izvora za eliminisanje naponskog ofseta optičkog prijemnika modelovan strujnim generatorom i_{a2}^2 . Šum koji unosi operacioni pojačavač u sklopu konvertora struje u napon modelovan je ekvivalentnim ulaznim naponskim generatorom v_{aa}^2 , i ekvivalentnim strujnim generatorima na ulazu i_{aa2}^2 i i_{a32}^2 [62]. Šum koji unosi otpornik R_F u grani negativne povratne sprege operacionog pojačavača modelovan je ekvivalentnim naponskim generatorom v_{ap}^2 , dok je šum koji unose bipolarni tranzistori Q_i , $i = \overline{1,10}$ modelovan ekvivalentnim naponskim generatorima v_{a2}^2 i ekvivalentnim strujnim generatorima $\overline{v_{a2}^2}$. Srednje kvadratne vrijednosti prethodno pomenutih generatora date su relacijama [2], [62], [63]:

$$\overline{I_{pd}^2} = 2qI_{PD}\Delta f , \qquad (4.52)$$

$$\overline{v_{R_F}^2} = 4kTR_F \Delta f , \qquad (4.53)$$

$$\overline{v_{Qi}^2} = 4kT \left(r_{bi} + \frac{1}{2g_{mi}} \right) \Delta f , \qquad (4.54)$$

$$\overline{I_{Q_i}^2} = 2q \left(I_{B_i} + \frac{K_i I_{B_i}}{f} \right) \Delta f , \qquad (4.55)$$

Slika 4.16 Model za male signale sa generatorima šuma optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima.

gdje je *k Boltzmann*-ova konstanta, *T* je apsolutna temperatura, *q* je elementarno naelektrisanje (veza prethodne tri veličine i termičkog napona V_T : $V_T = kT/q$), Δf je frekventni opseg, r_{bi} je otpornost baze bipolarnog tranzistora Q_i , I_{Bi} je jednosmjerna struja baze bipolarnog tranzistora Q_i , *f* je frekvencija, dok je *K*, konstanta *flicker* šuma bipolarnog tranzistora Q_i . Analizom modela za male signale prikazanog na slici 4.16, dobija se da je srednja kvadratna vrijednost napona baza-emitor $\overline{v_{bcl0}^2}$ bipolarnog tranzistora Q_{10} data izrazom:

$$\overline{v_{be10}^2} \approx \sum_{i=1}^{10} \overline{v_{Qi}^2} + \frac{\overline{i_{Q2}^2} + \overline{i_{Q3}^2}}{g_{m4}^2} + r_{\pi10}^2 \overline{i_{Q7}^2} + \frac{\overline{i_{Q8}^2} + \overline{i_{Q9}^2}}{g_{m7}^2} + \frac{\overline{i_{pd}^2} + \overline{i_{off}^2}}{g_{m5}^2}.$$
(4.56)

S obzirom da kroz bipolarne tranzistore Q_1 - Q_4 teku iste struje, kao i kroz bipolarne tranzistore Q_6 - Q_9 , relacija (4.56) se može zapisati na sljedeći način:

$$\overline{v_{be10}^2} \approx 4\overline{v_{Q4}^2} + \overline{v_{Q5}^2} + 4\overline{v_{Q6}^2} + \overline{v_{Q10}^2} + \frac{2\overline{i_{Q3}^2}}{g_{m4}^2} + \left(r_{\pi10}^2 + \frac{2}{g_{\pi17}^2}\right)\overline{i_{Q7}^2} + \frac{\overline{i_{pd}^2} + \overline{i_{off}^2}}{g_{m5}^2}.$$
(4.57)

Jednosmjerna ulazna struja I_{CVC} konvertora struje u napon je konstantna, $I_{CVC}=25 \ \mu\text{A}$ (za strujno pojačanje $\beta_{10}=100$, ulazna otpornost $r_{\pi 10}$ bipolarnog tranzistora Q_{10} iznosi $r_{\pi 10}=100 \ \text{k}\Omega$), dok je opseg kontrolne struje 20 $\mu\text{A} < I_{C2} < 180 \ \mu\text{A}$ (transkonduktansa g_{m7} bipolarnog tranzistora Q_7 je u opsegu 0.8 mS $< g_{m7} < 7.2$ mS), slijedi da je $r_{\pi 10} >> 2/g_{m7}$. Dakle, srednja kvadratna vrijednost napona baza-emitor $\overline{v_{k_{e10}}^2}$ bipolarnog tranzistora Q₁₀ može se aproksimirati na sljedeći način:

$$\overline{v_{bc10}^2} \approx 4\overline{v_{Q4}^2} + \overline{v_{Q5}^2} + 4\overline{v_{Q5}^2} + 4\overline{v_{Q10}^2} + \frac{2\overline{i_{Q3}^2}}{g_{m4}^2} + \overline{v_{\pi10}^2}\overline{i_{Q7}^2} + \frac{\overline{i_{pd}^2} + \overline{i_{off}^2}}{g_{m5}^2}.$$
(4.58)

Srednja kvadratna vrijednost izlaznog strujnog šuma $\overline{i_{cvc}^2}$ naponom kontrolisanog strujnog pojačavača može se izračunati na sljedeći način:

$$\overline{i_{cvc}^{2}} \approx g_{m10}^{2} \overline{v_{bc10}^{2}} \approx 4 \frac{kT}{V_{T}^{2}} I_{cvc}^{2} \left[10r_{b} + \frac{V_{T}}{2} \left(\frac{4}{I_{c1}} + \frac{1}{I_{PD}} + \frac{4}{I_{c2}} + \frac{1}{I_{Cvc}} \right) \right] \Delta f + 2q \left(2 \frac{I_{cvc}^{2}}{\beta_{4}I_{c1}} + \beta_{6}I_{c2} \right) \left(1 + \frac{K}{f} \right) \Delta f + 2q \frac{I_{cvc}^{2}}{I_{PD}} \Delta f + 4 + \frac{I_{cvc}^{2}}{I_{PD}} \Delta f + 4 + \frac{I_{cvc}^{2}}{I_{PD}^{2}} \frac{1}{\epsilon_{off}^{2}} \cdot (4.59)$$

U cilju dobijanja srednje kvadratne vrijednosti strujnog šuma $\overline{i_{VCCAm}^2}$ svedenog na ulaz naponom kontrolisanog strujnog pojačavača, srednju kvadratnu vrijednost izlaznog strujnog šuma $\overline{i_{crc}^2}$ naponom kontrolisanog strujnog pojačavača (4.59) (bez trećeg člana $2qI_{CVC}^2\Delta f I_{PD}$ i četvrtog člana $I_{CVC}^2 \overline{i_{off}^2} / I_{PD}^2$, koji predstavljaju strujni šum strujnih izvora na ulazu naponom kontrolisanog strujnog pojačavača) treba podijeliti kvadratom modula prenosne karakteristike naponom kontrolisanog strujnog pojačavača $|A_{VCCA}(s)|^2$, (4.44), (4.47), (4.49):

$$\frac{\overline{I_{\nu CCAIn}^{2}}}{\left|\frac{4kT}{V_{T}^{2}}\frac{I_{CVC}^{2}}{V_{T}^{2}}\left[10r_{b}^{2}+\frac{V_{T}}{2}\left(\frac{4}{I_{C1}}+\frac{1}{I_{PD}}+\frac{4}{I_{C2}}+\frac{1}{I_{CVC}}\right)\right]+2q\left(2\frac{I_{CVC}^{2}}{\beta_{4}I_{C1}}+\beta_{6}I_{C2}\right)\left(1+\frac{K}{f}\right)}{\left|A_{\nu CCA}\left(s\right)\right|^{2}}\Delta f. \quad (4.60)$$

Model dat relacijama (4.59) i (4.60) je izveden pod pretpostavkom da je ekvivalentna otpornost kola vezanog za izlaz naponom kontrolisanog strujnog izvora, tj. za kolektor bipolarnog tranzistora Q_{10} , mnogo manja od izlazne otpornosti r_{ce10} bipolarnog tranzistora Q_{10} . Takođe je pretpostavljeno da svi bipolarni tranzistori Q_1 - Q_{10} imaju istu otpornost baze r_b , kao i istu konstantu *K flicker* šuma. Na osnovu relacije (4.59) se može zaključiti da izlazni strujni šum I_{cvc}^2 naponom kontrolisanog strujnog pojačavača ne zavisi od šuma kontrolnih strujnih izvora I_{C1} i I_{C2} . Prvi član relacije (4.59) se mijenja sa promjenom kontrolne struje I_{C2} i struje fotodiode I_{PD} . Drugi član relacije (4.59) se mijenja sa promjenom kontrolne struje I_{C2} . Treći i četvrti član relacije (4.59) se mijenjaju sa promjenom struje fotodiode I_{PD} . Šum koji je definisan prvim, trećim i četvrtim članom relacije (4.59) opada sa povećanjem struje fotodiode I_{PD} (sa povećanjem kontrolne struje I_{C2} , odnosno, sa smanjenjem transimpedanse T). Sa druge strane, šum koji je definisan drugim članom relacije (4.59) se povećava sa povećanjem kontrolne struje I_{C2} (sa povećanjem struje fotodiode I_{PD} , odnosno, sa smanjenjem transimpedanse T). Za $I_{C1}=50 \ \mu$ A, 20 $\ \mu$ A $< I_{C2}<180 \ \mu$ A, 40 nA $< I_{PD}<300 \ \mu$ A, $I_{CVC}=25 \ \mu$ A, $r_b=300 \ \Omega$, $V_T=25 \ m$ V, $\beta_d=\beta_b=100, k=1.38\cdot10^{-23} \ J/K, q=1.602\cdot10^{-19} \ C$, zanemarujući *flicker* šum, mogu se izvesti sljedeći zaključci:

- Šum koji je definisan prvim i trećim članom relacije (4.59) dominira u odnosu na šum definisan drugim članom, za velike transimpedanse T. Dakle, izlazni strujni šum $\overline{l_{cvc}^2}$ naponom kontrolisanog strujnog pojačavača će se smanjivati sa smanjenjem transimpedanse T (sa povećanjem struje fotodiode I_{PD} , odnosno, sa povećanjem kontrolne struje I_{C2}), za velike transimpedanse T.
- Smanjenje šuma definisanog prvim i trećim članom relacije (4.59) sa smanjenjem transimpedanse T (povećanjem struje fotodiode I_{PD} odnosno, sa povećanjem kontrolne struje I_{C2}) uravnoteženo je povećanjem šuma koji je definisan drugim članom iste relacije, za male transimpedanse T. Kao rezultat, izlazni strujni šum i²/_{cre} naponom kontrolisanog strujnog pojačavača je približno konstantan, za male transimpedanse T.

Srednja kvadratna vrijednost izlaznog naponskog šuma $\overline{v_{out}^2}$ konvertora struje u napon u funkciji srednje kvadratne vrijednosti izlaznog strujnog šuma $\overline{i_{crc}^2}$ naponom kontrolisanog strujnog pojačavača data je izrazom:

$$\overline{v_{out}^{2}} \approx \frac{\left[\frac{1}{R_{F}^{2}} + \omega^{2} \left(C_{F} + C_{C10}\right)^{2}\right] \overline{v_{oa}^{2}} + \overline{i_{oc-}^{2}} + \frac{\overline{v_{R_{F}}^{2}}}{R_{F}^{2}} + \overline{i_{cvc}^{2}}}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{b}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{b}R_{F}} + C_{F}\right)^{2}}.$$
(4.61)

U cilju dobijanja srednje kvadratne vrijednosti naponskog šuma $\overline{v_{CVCm}^2}$ svedenog na ulaz konvertora struje u napon, srednju kvadratnu vrijednost izlaznog naponskog šuma $\overline{v_{vuu}^2}$ konvertora struje u napon (4.61) (bez člana $\overline{i_{cvc}^2}$ koji predstavlja strujni šum strujnog izvora na ulazu konvertora struje u napon) treba podijeliti kvadratom modula prenosne karakteristike konvertora struje u napon $|A_{CVC}(s)|^2$, (4.45), (4.48), (4.50):

$$\overline{v_{CVCm}^{2}} = \frac{1}{\left|A_{CVC}\left(s\right)\right|^{2}} \overline{v_{out}^{2}}_{\frac{1}{|a_{ex}=0}} \approx \frac{1}{\left|A_{CVC}\left(s\right)\right|^{2}} \frac{\left[\frac{1}{R_{F}^{2}} + \omega^{2}\left(C_{F} + C_{C10}\right)^{2}\right] \overline{v_{oa}^{2}} + \overline{i_{oc-}^{2}} + \frac{\overline{v_{R_{F}}^{2}}}{R_{F}^{2}}}{\left(\frac{1}{R_{F}} - \omega^{2}\frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2}\left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}}.$$
(4.62)

Na osnovu relacija (4.59) i (4.61) srednja kvadratna vrijednost naponskog šuma $\overline{v_{out}^2}$ na izlazu optičkog prijemnika može se zapisati na sljedeći način:

$$\begin{split} \overline{v_{out}^{2}} &\approx \frac{\left[\frac{1}{R_{F}^{2}} + \omega^{2} \left(C_{F} + C_{C10}\right)^{2}\right] \overline{v_{ou}^{2}} + \overline{i_{ou-}^{2}} + \frac{4kT}{R_{F}} \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{4kT \frac{I_{CVC}^{2}}{V_{T}^{2}} \left[10r_{h} + \frac{V_{T}}{2} \left(\frac{4}{I_{C1}} + \frac{1}{I_{PD}} + \frac{4}{I_{C2}} + \frac{1}{I_{CVC}}\right)\right] \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{2q \left(2 \frac{I_{CVC}^{2}}{\beta_{4}I_{C1}} + \beta_{6}I_{C2}\right) \left(1 + \frac{K}{f}\right) \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{2q \left(\frac{I_{CVC}^{2}}{\beta_{4}I_{C1}} + \beta_{6}I_{C2}\right) \left(1 + \frac{K}{f}\right) \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{2q \left(\frac{I_{CVC}^{2}}{\beta_{4}I_{C1}} + \beta_{6}I_{C2}\right) \left(1 + \frac{K}{f}\right) \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{\frac{I_{CVC}^{2}}{I_{PD}^{2}}}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{I_{CVC}^{2}}{I_{PD}^{2}} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{I_{CVC}^{2}}{I_{PD}^{2}} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{I_{CVC}^{2}}{I_{PD}^{2}} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{h}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{I_{CVC}^{2}}{I_{PD}^{2}} + \omega^{2} \left(\frac{1}{A_{0}\omega_{h}R_{F}} + C_{F}\right)^{2}} + \frac{I_{CVC}^{2}}{I_{PD}^{2}} + \frac{I_{CVC}^{2}}{I_{PD}^{2}}$$

(4.63)

Prvi član u izrazu za srednju kvadratnu vrijednost šuma na izlazu optičkog prijemnika (4.63) je konstantan za datu frekvenciju f i zavisi od nešumnih (A_0 , ω_b , R_F , C_F i C_{C10}) i šumnih ($\overline{v_{ca}^2}$, $\overline{i_{ca}^2}$ i $\overline{v_{R_{e}}^{2}}$) parametara konvertora struje u napon. Ostali članovi u izrazu za srednju kvadratnu vrijednost šuma na izlazu optičkog prijemnika (4.63) u svojim brojiocima sadrže šumne parametre naponom kontrolisanog strujnog pojačavača, dok imenioci sadrže nešumne parametre $(A_0, \omega_b, R_F, C_F \text{ i } C_{C10})$ konvertora struje u napon. Drugi član u relaciji (4.63) se mijenja sa promjenom kontrolne struje I_{C2} i struje fotodiode I_{PD} za datu frekvenciju f. On potiče od šuma koji unose bipolarni tranzistori Qi, a koji je modelovan ekvivalentnim ulaznim naponskim generatorima $\overline{v_{ih}^2}$ (4.54), $i = \overline{1,10}$. Treći član u relaciji (4.63) se mijenja sa promjenom kontrolne struje I_{C2} za datu frekvenciju f i potiče od šuma koji unose bipolarni tranzistori Q_i, a koji je modelovan ekvivalentnim ulaznim strujnim generatorima $\overline{i_{0}^{2}}$ (4.55), $j \in \{2, 3, 7, 8, 9\}$. Četvrti član u relaciji (4.63) se mijenja sa promjenom struje fotodiode I_{PD} za datu frekvenciju f i potiče od šuma koji unosi fotodioda (4.52). Peti član u relaciji (4.63) se mijenja sa promjenom struje fotodiode I_{PD} za datu frekvenciju f i potiče od strujnog izvora za eliminisanje naponskog ofseta optičkog prijemnika. Uzimajući da je I_{CI} =50 µA, 20 µA< I_{C2} <180 µA, 40 nA< I_{PD} <300 µA, $I_{CI'C}=25 \ \mu A, r_b=300 \ \Omega, V_T=25 \ mV, \beta_{d}=\beta_{b}=100, q=1.602 \cdot 10^{-19} \ C, i \ zanemarujući \ flicker \ sum,$ pokazuje se da je srednja kvadratna vrijednost šuma na izlazu optičkog prijemnika $\overline{v_{out}^2}$ (4.63) dominantno određena srednjom kvadratnom vrijednošću izlaznog strujnog šuma $\overline{i_{cvc}^2}$ naponom kontrolisanog strujnog pojačavača (4.59), dok se šum konvertora struje u napon može zanemariti:

$$\begin{split} \overline{v_{out}^{2}} &\approx \frac{\overline{i_{ovc}^{2}}}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{b}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{b}R_{F}} + C_{F}\right)^{2}} \approx \\ &\approx \frac{4kT \frac{I_{CVC}^{2}}{V_{T}^{2}} \left[10r_{h} + \frac{V_{T}}{2} \left(\frac{4}{I_{C1}} + \frac{1}{I_{PD}} + \frac{4}{I_{C2}} + \frac{1}{I_{CVC}}\right)\right] \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{b}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{b}R_{F}} + C_{F}\right)^{2}} + \\ &+ \frac{2q \left(2 \frac{I_{CVC}^{2}}{\beta_{4}I_{C1}} + \beta_{6}I_{C2}\right) \left(1 + \frac{K}{f}\right) \Delta f}{\left(\frac{1}{R_{F}} - \omega^{2} \frac{C_{F} + C_{C10}}{A_{0}\omega_{b}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{b}R_{F}} + C_{F}\right)^{2}} + \end{split}$$

$$+\frac{2q\frac{I_{CVC}^{2}}{I_{PD}}\Delta f}{\left(\frac{1}{R_{F}}-\omega^{2}\frac{C_{F}+C_{C10}}{A_{0}\omega_{h}}\right)^{2}+\omega^{2}\left(\frac{1}{A_{0}\omega_{h}R_{F}}+C_{F}\right)^{2}}+\frac{I_{CVC}^{2}}{I_{PD}^{2}}\frac{1}{\delta_{off}}}{\left(\frac{1}{R_{F}}-\omega^{2}\frac{C_{F}+C_{C10}}{A_{0}\omega_{h}}\right)^{2}+\omega^{2}\left(\frac{1}{A_{0}\omega_{h}R_{F}}+C_{F}\right)^{2}}.$$
(4.64)

U cilju dobijanja srednje kvadratne vrijednosti strujnog šuma $\overline{i_{TIAIn}^2}$ svedenog na ulaz transimpedansnog pojačavača, srednja kvadratna vrijednost izlaznog naponskog šuma $\overline{v_{out}^2}$ optičkog prijemnika (4.64) (bez trećeg člana $2qI_{CVC}^2\Delta f^2 I_{PD}$ i četvrtog člana $I_{CVC}^2 \overline{i_{off}^2} / I_{PD}^2$, koji predstavljaju strujni šum strujnih izvora na ulazu transimpedansnog pojačavača) treba da se podijeli kvadratom modula prenosne karakteristike optičkog prijemnika $|T(s)|^2$, (4.46)-(4.50):

$$\overline{t_{IIAm}^{2}} = \frac{1}{\left|T(s)\right|^{2}} \overline{v_{out}^{2}}_{\frac{1}{P_{P}}=0, \frac{1}{V_{ogg}^{2}}=0} \approx \frac{4kT \frac{I_{CVC}^{2}}{V_{T}^{2}} \left[10r_{h} + \frac{V_{T}}{2} \left(\frac{4}{I_{C1}} + \frac{1}{I_{PD}} + \frac{4}{I_{C2}} + \frac{1}{I_{CVC}}\right)\right] + 2q \left(2\frac{I_{CVC}^{2}}{\beta_{4}I_{C1}} + \beta_{6}I_{C2}\right) \left(1 + \frac{K}{f}\right)}{\left|T(s)\right|^{2} \left[\left(\frac{1}{R_{F}} - \omega^{2}\frac{C_{F} + C_{C10}}{A_{0}\omega_{b}}\right)^{2} + \omega^{2} \left(\frac{1}{A_{0}\omega_{b}R_{F}} + C_{F}\right)^{2}\right]}$$

5 UPOREDNA ANALIZA FREKVENTNOG ODZIVA I STABILNOSTI OPTIČKOG PRIJEMNIKA SA PROMJENLJIVOM TRANSIMPEDANSOM NA BAZI TRANSLINEARNE PETLJE SA BIPOLARNIM TRANZISTORIMA REALIZOVANOG U 0.6 μm BICMOS SILICIJUMSKOJ TEHNOLOGIJI I 0.35 μm BICMOS SILICIJUM-GERMANIJUMSKOJ TEHNOLOGIJI

Kada je u pitanju bipolarna tehnologija, ili bipolarni dio BiCMOS tehnologije, uglavnom je poželjno imati manje vrijeme prolaska τ_b (*transit time*) manjinskih nosilaca naelektrisanja kroz bazu. veće strujno pojačanje β , i veći *Early*-jev napon V_A bipolarnih tranzistora. Generalno važi pretpostavka da će dizajn baziran na bipolarnim tranzistorima čije je vrijeme prolaska τ_b manjinskih nosilaca kroz bazu manje, strujno pojačanje β veće i *Early*-jev napon V_A veći, imati bolje performanse. Što su pomenuti parametri bolji, odgovarajuća bipolarna ili BiCMOS tehnologija je skuplja.

Optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima je dizajniran i fabrikovan u dvije različite tehnologije: 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Iako bipolarni dio 0.6 µm BiCMOS silicijumske tehnologije (učestanost na kojoj je strujno pojačanje β jednako jedinici f_7 =14 GHz, strujno pojačanje β =90 i Early-jev napon V_A =25 V) ima značajno lošije parametre nego u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji (učestanost na kojoj je strujno pojačanje β jednako jedinici f_T =40 GHz, strujno pojačanje β =170 i Early-jev napon $V_A > 100$ V), stabilnost optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji je mnogo bolja nego u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Prethodno je dokazano matematičkim modelovanjem i simulacijama u MATLAB-u, kao i eksperimentalnim rezultatima. Kao posljedica, dinamički opseg transimpedansi TDR optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji (*TDR*=8322.6, od 1.55 k Ω do 12.9 M Ω) je mnogo veći nego u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji (*TDR*=475.4, od 1.83 k Ω do 870 k Ω). Osim velikog dinamičkog opsega transimpedansi, jedna od značajnih osobina predstavljenog optičkog prijemnika je mogućnost poboljšanja stabilnosti bez negativnog uticaja na frekventni opseg, odnosno, mogućnost proširenja frekventnog opsega bez negativnog uticaja na stabilnost sistema, kada je u pitanju 0.6 µm BiCMOS silicijumska tehnologija. Međutim, ovu osobinu ne pokazuje isti dizajn u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

lako je teško povjerovati da lošija integrisana tehnologija može dati neke prednosti u odnosu na bolju integrisanu tehnologiju, optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima realizovan u 0.6 μm BiCMOS silicijumskoj tehnologiji ima bolje performanse od realizacije u 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji. Cilj ovog poglavlja je da se uporednom analizom realizacija istog kola u dvije različite BiCMOS tehnologije pokaže da bolja tehnologija ne podrazumijeva uvijek i bolje performanse samog kola. Precizno su utvrđeni uzroci koji dovode do ovog neočekivanog rezultata. Osim toga, biće pokazano da performanse optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima u BiCMOS tehnologiji ne mogu biti poboljšane modifikacijom kola realizovanog u boljoj 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji.

5.1 Uporedna analiza frekventnog odziva i stabilnosti optičkog prijemnika realizovanog u različitim tehnologijama

Radi jednostavnijeg praćenja, prenosna karakteristika optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima T(s) izvedena u poglavlju 4.6 ovdje je ponovo navedena:

$$T(s) = \frac{v_{out}}{i_{pd}} = \frac{i_{evc}}{i_{pd}} \frac{v_{out}}{i_{evc}} = A_{VCCA}(s) A_{CVC}(s) \approx$$

$$\approx \frac{A_0 \omega_h g_{m4} g_{m9} g_{m10}}{4(C_F + C_{C10}) \left\{ g_{m9} C_{PD} C_{C4} + 4 \left[\left(\frac{1}{r_{ee4}} + \frac{1}{r_{\pi 5}} \right) C_{PD} + \left(g_{m5} + \frac{1}{4r_{\pi 4}} \right) C_{C4} \right] C_{B10} \right\}} \cdot \frac{1}{\left[s^2 + s \frac{\omega_{0VCCA}}{Q_{VCCA}} + \omega_{0VCCA}^2 \right] \left[s^2 + s \frac{\omega_{0CVC}}{Q_{CVC}} + \omega_{0CVC}^2 \right]}.$$
(5.1)

U poglavlju 4.6 pokazano je da su frekventne karakteristike optičkog prijemnika sa promjenljivom transimpedansom određene frekventnim karakteristikama naponom kontrolisanog strujnog pojačavača. Dakle, uporedna analiza frekventnog odziva i stabilnosti kompletnog optičkog prijemnika sa promjenljivom transimpedansom realizovanog u dvije različite tehnologije svodi se na uporednu analizu odgovarajućih prenosnih karakteristika $A_{VCCA}(s)$ naponom kontrolisanog strujnog pojačavača. Ova prenosna karakteristika takođe je data u poglavlju 4, a ovdje će biti ponovo navedena:

$$A_{PCCA}(s) = \frac{I_{cvc}}{i_{pd}} \approx \frac{g_{m4}g_{m9}g_{m10}}{4\left\{g_{m9}C_{PD}C_{C4} + 4\left[\left(\frac{1}{r_{cv4}} + \frac{1}{r_{\pi5}}\right)C_{PD} + \left(g_{m5} + \frac{1}{4r_{\pi4}}\right)C_{C4}\right]C_{g10}\right\}\left(s^{2} + s\frac{\omega_{0VCCA}}{Q_{VCCA}} + \omega_{0VCCA}^{2}\right), (5.2)$$

gdje su prirodna učestanost ω_{nVCCA} i faktor Q_{VCCA} dati sljedećim izrazima:

$$\begin{split} & \omega_{0PCCA} = \frac{1}{2} \sqrt{\frac{g_{m4}g_{m5}g_{m9}}{g_{m9}C_{PD}C_{C4} + 4 \left[\left(\frac{1}{r_{cc4}} + \frac{1}{r_{n5}}\right)C_{PD} + \left(g_{m5} + \frac{1}{4r_{n4}}\right)C_{C4}\right]C_{B10}} = \\ & = \frac{1}{2V_{T}} \sqrt{\frac{I_{C1}C_{C}I_{PD}C_{C4} + 4 \left[\left(\frac{V_{T}}{V_{A}}C_{PD} + \frac{C_{C4}}{4\beta_{4}}\right)I_{C1} + \left(\frac{C_{PD}}{\beta_{5}} + C_{C4}\right)I_{PD}\right]C_{B10}}, \end{split}$$
(5.3)
$$& Q_{PCCA} = \frac{1}{2} \frac{\sqrt{\frac{g_{m4}g_{m9}}{g_{m5}}} \left[g_{m9}C_{PD}C_{C4} + 4 \left[\left(\frac{1}{r_{cc4}} + \frac{1}{r_{n5}}\right)C_{PD} + \left(g_{m5} + \frac{1}{4r_{n4}}\right)C_{C4}\right]C_{B10} \right]}{g_{m4}C_{B10} + \frac{g_{m9}}{g_{m5}} \left[\left(\frac{1}{r_{cc4}} + \frac{1}{r_{n5}}\right)C_{PD} + \left(g_{m5} + \frac{1}{4r_{n4}}\right)C_{C4} \right]} = \\ & = \frac{1}{2} \frac{\sqrt{I_{C1}I_{C2}I_{PD}}} \left\{ I_{C2}C_{PD}C_{C4} + 4 \left[\left(\frac{V_{T}}{V_{A}}C_{PD} + \frac{C_{C4}}{4\beta_{4}}\right)I_{C1} + \left(\frac{C_{PD}}{\beta_{5}} + C_{C4}\right)I_{PD} \right]C_{B10} \right\}}{I_{C1}I_{PD}C_{B10} + I_{C2} \left[\left(\frac{V_{T}}{V_{A}}C_{PD} + \frac{C_{C4}}{4\beta_{4}}\right)I_{C1} + \left(\frac{C_{PD}}{\beta_{5}} + C_{C4}\right)I_{PD} \right]. \end{cases}$$
(5.4)

Značenje pojedinih parametara u relacijama (5.1)-(5.4) je sljedeće: $g_{mJ}=I_{CI}/V_T$, $g_{mS}=I_{PD}/V_T$, $g_{mS}=I_{PD}/V_T$, $g_{mS}=I_{C2}/V_T$ i $g_{mI0}=I_{CVC}/V_T$ su transkonduktanse bipolarnih tranzistora Q₄, Q₅, Q₉, i Q₁₀, respektivno, V_T je termički napon, $r_{\pi J}=\beta_J/g_{mJ}$ i $r_{\pi S}=\beta_J/g_{mS}$ su ulazne otpornosti bipolarnih tranzistora Q₄ i Q₅, respektivno, β_J i β_S su strujna pojačanja bipolarnog tranzistora Q₄ i Q₅, respektivno, $r_{ceJ}=V_A/I_{CI}$ je izlazna otpornost bipolarnog tranzistora Q₄, V_A je Early-jev napon. Kako je kontrolna struja I_{CI} koja teče kroz bipolarni tranzistor Q₄ konstantna, strujno pojačanje β_J je konstantno, za razliku od strujnog pojačanja β_S . Uticaj Early-jevog napona V_A i strujnog pojačanja β na prirodnu učestanost ω_{0VCCA} i faktor Q_{VCCA} može se uočiti iz relacija (5.3) i (5.4). Sa druge strane, uticaj učestanosti f_T na kojoj je strujno pojačanje β jednako jedinici na prirodnu učestanost α_{0VCCA} (5.4) je indirektan, preko ekvivalentne kapacitivnosti C_{B10} na bazi bipolarnog tranzistora Q₁₀. Učestanost f_T na kojoj je strujno pojačanje β jednako jedinici je inverzno proporcionalna vremenu prolaska τ_b manjinskih nosilaca naelektrisanja kroz bazu

bipolarnog tranzistora Q_{10} . Ovo vrijeme prolaska τ_b je direktno proporcionalno kapacitivnosti nagomilanog tovara koja je osnovni dio ekvivalentne kapacitivnosti C_{B10} na bazi bipolarnog tranzistora Q_{10} [35], [62]-[65]. Dakle, velika učestanost f_T (manje vrijeme prolaska τ_b manjinskih nosilaca naelektrisanja kroz bazu) znači manju ekvivalentnu kapacitivnost C_{B10} na bazi bipolarnog tranzistora Q_{10} , i obratno.

Prirodna učestanost ω_{nVCCA} (5.3) i faktor Q_{VCCA} (5.4) su složene funkcije više promjenljivih veličina, pa je veoma teško analitički izvesti potrebne zaključke. Iz tog razloga, korišćene su simulacije u MATLAB-u. Odgovarajući MATLAB programi dati su u Dodatku F. Simulacije su izvršene za tipične vrijednosti parametara u dvije različite tehnologije: 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Bipolarni tranzistori u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji imaju mnogo bolje karakteristike od bipolarnih tranzistora u 0.6 µm BiCMOS silicijumskoj tehnologiji. Vrijeme prolaska τ_b manjinskih nosilaca naelektrisanja kroz bazu bipolarnih tranzistora u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji je mnogo manje nego kod bipolarnih tranzistora u 0.6 μ m BiCMOS silicijumskoj tehnologiji. Slijedi da je strujno pojačanje β bipolarnih tranzistora u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji mnogo veće nego kod bipolarnih tranzistora u 0.6 µm BiCMOS silicijumskoj tehnologiji. Kapacitivnost nagomilanog tovara bipolarnih tranzistora u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji je mnogo manja nego kod bipolarnih tranzistora u 0.6 µm BiCMOS silicijumskoj tehnologiji, za istu jednosmjernu struju kolektora. Early-jev napon VA bipolarnih tranzistora u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji je mnogo veći nego kod bipolarnih tranzistora u 0.6 µm BiCMOS silicijumskoj tehnologiji.

Kontrolna struja I_{CI} ima jednu od tri vrijednosti: 50 µA, 100 µA ili 150 µA. U MATLAB simulacijama, kontrolna struja I_{C2} računata je na osnovu relacije (4.33), pri čemu je struja fotodiode u granicama 40 nA< I_{PD} <300 µA, kontrolna struja I_{CI} =50 µA (I_{CI} =100 µA, I_{CI} =150 µA) i izlazna struja strujnog pojačavača I_{CVC} =25 µA. Za tako dobijene kontrolne struje I_{CI} i I_{C2} , i struju fotodiode I_{PD} , prirodna učestanost ω_{0VCCA} i faktor Q_{VCCA} su računati na osnovu relacija (5.3) i (5.4), respektivno.

Pretpostavljeno je da je strujno pojačanje β_6 bipolarnog tranzistora Q₆ mnogo veće od 1, β_6 >>1. Za struju fotodiode 40 nA< I_{PD} <300 µA i izlaznu struju strujnog pojačavača I_{CVC} =25 µA, kontrolna struja I_{C2} se mijenja na sljedeći način: 20 µA< I_{C2} <180 µA za I_{CI} =50 µA, 40 µA< I_{C2} <360 µA za I_{CI} =100 µA, 60 µA< I_{C2} <540 µA za I_{CI} =150 µA. Tipična vrijednost strujnog pojačanja β u 0.6 µm BiCMOS silicijumskoj tehnologiji je 90, dok je tipična vrijednost strujnog pojačanja β u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji 170. U simulacijama je uzeto da strujna pojačanja β_4 i β_6 bipolarnih tranzistora Q₄ i Q₆, respektivno, imaju vrijednosti 60, 90 i 120 u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, 130, 170 i 210 u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji. Sa druge strane, strujno pojačanje β_5 se linearno mijenja sa promjenom struje fotodiode I_{PD} i ima vrijednost od 20 do 60, od 30 do 90 i od 40 do 120, u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, od 45 do 130, od 55 do 170 i od 70 do 210, u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Najmanja vrijednost Early-jevog napona V_d u 0.6 µm BiCMOS silicijumskoj tehnologiji je 15 V, dok je tipična vrijednost Early-jevog napona V_A u ovoj tehnologiji oko 25 V. Najmanja vrijednost Early-jevog napona V_A u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji je 60 V, dok je tipična vrijednost Early-jevog napona V_A u ovoj tehnologiji iznad 100 V. U MATLAB simulacijama Early-jev napon V_d ima vrijednosti 15 V, 25 V i 35 V u 0.6 μm BiCMOS silicijumskoj tehnologiji i 60 V, 90 V i 120 V u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji. Ekvivalentna kapacitivnost C_{C4} na kolektoru bipolarnog tranzistora Q_4 se linearno mijenja sa promjenom struje fotodiode I_{PD} i ima vrijednost od 5 fF do 60 fF u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, od 5 fF do 30 fF u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Površina, kao i kapacitivnost po jedinici površine fotodiode kod optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji su manje nego kod optičkog prijemnika u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji. Kapacitivnost fotodiode CPD ima vrijednosti 150 fF, 200 fF i 250 fF u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, 200 fF, 250 fF i 300 fF u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Ekvivalentna kapacitivnost C_{B10} na bazi bipolarnog tranzistora Q10 ima vrijednosti 20 fF, 40 fF i 60 fF u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, 10 fF, 30 fF, 50 fF i 120 fF u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

Vrijednosti pojedinih parametara koji su korišćeni u MATLAB simulacijama prikazane su u Tabeli 5.1.

Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} i zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom, simulirane u MATLAB-u, prikazane su na slikama 5.1 i 5.2, respektivno. Prirodna učestanost ω_{0VCCA} je rastuća funkcija u najvećem dijelu opsega kontrolne struje IC2. Najveća vrijednost prirodne učestanosti ω_{0VCCA} javlja se za kontrolnu struju I_{C2} u opsegu 120 μ A $< I_{C2}$ <140 μ A u 0.6 μ m BiCMOS silicijumskoj tehnologiji, odnosno, za 150 µA<lc2<170 µA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. U najvećem dijelu opsega kontrolne struje I_{C2} , uticaj ekvivalentne kapacitivnosti C_{B10} na prirodnu učestanost ω_{0VCCA} je veoma mali, za $C_{B10} \le 60$ fF, u obje tehnologije. U dijelu karakteristike gdje je uticaj kapacitivnosti C_{BIO} na prirodnu učestanost ω_{0VCCA} uočljiv, vrijednost prirodne učestanosti ω_{0VCCA} je mnogo veća (>12 Grad/s u 0.6 μ m BiCMOS silicijumskoj tehnologiji i >15 Grad/s u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji) od frekventnog opsega fotodiode. Prirodna učestanost abvcca u 0.6 µm BiCMOS silicijumskoj tehnologiji je manja od prirodne učestanosti u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} . Faktor Q_{VCCA} je opadajuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . Najveća vrijednost faktora Q_{VCCA} javlja se za 25 μA<I_{C2}<35 μA 0.6 μm BiCMOS silicijumskoj tehnologiji, odnosno, za 20 μA<I_{C2}<30 μA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. U najvećem dijelu opsega kontrolne struje I_{C2} , uticaj ekvivalentne kapacitivnosti C_{BI0} na faktor Q_{VCCA} je značajan, što je naročito izraženo za najveće vrijednosti faktora Q_{VCCA} . Faktor Q_{VCCA} opada sa porastom ekvivalentne kapacitivnosti C_{BI0} (sa porastom konstantne jednosmjerne struje I_{CVC} na izlazu naponom kontrolisanog strujnog pojačavača, odnosno, sa smanjenjem otpornosti R_F). Faktor Q_{VCCA} je mnogo manji u 0.6 µm BiCMOS silicijumskoj tehnologiji, nego u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} , naročito kada su u pitanju najveće vrijednosti faktora Q_{VCCA} .

Zavisnost prirodne učestanosti ω_{VCCA} od kontrolne struje I_{C2} i zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2}, sa kapacitivnošću fotodiode C_{PD} kao parametrom, simulirane u MATLAB-u, prikazane su na slikama 5.3 i 5.4, respektivno. Prirodna učestanost ω_{nVCCA} je rastuća funkcija u najvećem dijelu opsega kontrolne struje IC2. Najveća vrijednost prirodne učestanosti Worca javlja se za kontrolnu struju I_{C2} u opsegu 120 µA<I_{C2}<130 µA 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, za 150 µA < I_{C2} < 160 µA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Uticaj kapacitivnosti fotodiode C_{PD} na prirodnu učestanost ω_{OVCCA} nije značajan. Prirodna učestanost ω_{0VCCA} u 0.6 µm BiCMOS silicijumskoj tehnologiji je manja od prirodne učestanosti u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} . Faktor Q_{VCCA} je opadajuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . Najveća vrijednost faktora Q_{VCCA} javlja se za 30 μ A< I_{C2} <35 μ A u 0.6 μ m BiCMOS silicijumskoj tehnologiji, odnosno, za 22 µA <I_{C2}<25 µA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Iako faktor Q_{VCCA} blago opada sa smanjenjem kapacitivnosti fotodiode C_{PD} , uticaj kapacitivnosti fotodiode C_{PD} na faktor Q_{VCCA} se može zanemariti. Faktor Q_{VCCA} je mnogo manji u 0.6 µm BiCMOS silicijumskoj tehnologiji, nego u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji, za istu kontrolnu struju I_{C2}, naročito kada su u pitanju najveće vrijednosti faktora Ovcca.

Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} i zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa *Early*-jevim naponom V_A kao parametrom, simulirane u MATLAB-u, prikazane su na slikama 5.5 i 5.6, respektivno. Prirodna učestanost ω_{0VCCA} je rastuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . Najveća vrijednost prirodne učestanosti ω_{0VCCA} javlja se za I_{C2} =125 µA u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, za I_{C2} =155 µA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Promjena *Early*-jevog napona V_A ne utiče na prirodnu učestanost ω_{0VCCA} . Prirodna učestanost ω_{0VCCA} u 0.6 µm BiCMOS silicijumskoj tehnologiji je manja od prirodne učestanosti u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} . Faktor Q_{VCCA} je opadajuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . Najveća vrijednost faktora Q_{VCCA} javlja se za kontrolnu struju I_{C2} u opsegu 28 µA $<I_{C2}<35$ µA u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, za 23 µA $<I_{C2}<28$ µA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Uticaj *Early*-jevog napona V_A na faktor Q_{VCCA} je značajan samo u uskom dijelu opsega kontrolne struje I_{C2} koji odgovara najvećim vrijednostima faktora Q_{VCCA} . Faktor Q_{VCCA} opada sa smanjenjem *Early*-jevog napona V_A . Faktor Q_{VCCA} je mnogo manji u 0.6 µm BiCMOS silicijumskoj tehnologiji, nego u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} , naročito kada su u pitanju najveće vrijednosti faktora Q_{VCCA} .

Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} i zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom, simulirane u MATLAB-u, prikazane su na slikama 5.7 i 5.8, respektivno. Prirodna učestanost ω_{nVCCA} je rastuća funkcija u najvećem dijelu opsega kontrolne struje IC2. Najveća vrijednost prirodne učestanosti WOVCCA javlja se za 125 μA<I_{C2}<130 μA u 0.6 μm BiCMOS silicijumskoj tehnologiji, odnosno, za 155 μA<I_{C2}<160 μA u 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji. Uticaj strujnog pojačanja β na prirodnu učestanost ω_{0VCCA} se može zanemariti. Prirodna učestanost ω_{nVCCA} u 0.6 µm BiCMOS silicijumskoj tehnologiji je manja od prirodne učestanosti u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} . Faktor $Q_{I'CCA}$ je opadajuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2} . Najveća vrijednost faktora Q_{VCCA} javlja se za 30 μ A $<I_{C2}$ <33 μ A u 0.6 μ m BiCMOS silicijumskoj tehnologiji, odnosno, za 24 µA<I_{C2}<27 µA u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Iako faktor $\mathcal{Q}_{\mathcal{VCCA}}$ blago opada sa smanjenjem strujnog pojačanja eta, uticaj strujnog pojačanja eta na faktor Q_{VCCA} nije značajan. Faktor Q_{VCCA} je mnogo manji u 0.6 µm BiCMOS silicijumskoj tehnologiji, nego u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, za istu kontrolnu struju I_{C2} , naročito kada su u pitanju najveće vrijednosti faktora Q_{VCCA} .

Zavisnost prirodne učestanosti ω_{nVCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} i zavisnost faktora Q_{VCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom, simulirane u MATLAB-u, prikazane su na slikama 5.9 i 5.10, respektivno. Prirodna učestanost ω_{nVCCA} je opadajuća funkcija u najvećem dijelu opsega odnosa kontrolnih struja I_{CI}/I_{C2} (rastuća funkcija u najvećem dijelu opsega kontrolne struje I_{C2}). Najveća vrijednost prirodne učestanosti ω_{0VCCA} javlja se za odnos kontrolnih struja I_{CI}/I_{C2} u opsegu $0.3 < I_{CI}/I_{C2} < 0.35$ u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, za 0.28<ICI/IC2<0.3 u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji. Uticaj kontrolne struje I_{CI} na prirodnu učestanost $\omega_{0I'CCA}$ je veoma izražen, naročito pri malom odnosu kontrolnih struja I_{CI}/I_{C2} . Prirodna učestanost ω_{DICCA} se povećava sa povećanjem kontrolne struje I_{Cl} . Prirodna učestanost ω_{0VCCd} u 0.6 μ m BiCMOS silicijumskoj tehnologiji je manja od prirodne učestanosti u 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji, za isti odnos kontrolnih struja I_{C1}/I_{C2} . Najveća vrijednost faktora $Q_{I'CCA}$ javlja se za odnos kontrolnih struja I_{CI}/I_{C2} u opsegu $1.1 < I_{CI}/I_{C2} < 1.7$ u 0.6 µm BiCMOS silicijumskoj tehnologiji, odnosno, za 1.4</br> germanijumskoj tehnologiji. Uticaj kontrolne struje I_{CI} na faktor Q_{VCCA} je evidentan. Međutim, najveće vrijednosti faktora Q_{VCCA} su približno jednake za različite kontrolne struje I_{CI} . Faktor Q_{VCCA} je mnogo manji u 0.6 µm BiCMOS silicijumskoj tehnologiji, nego u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, za isti odnos kontrolnih struja I_{CI}/I_{C2} , naročito kada su u pitanju najveće vrijednosti faktora Q_{VCCA} .

	0.6 µm BiCMOS silicijumska tehnologija	0.35 µm BiCMOS silicijum-germanijumska tehnologija
I _{PD}	40 nA - 300 μA	40 nA - 300 μA
I _{CI}	50 μΑ, 100 μΑ, 150 μΑ	50 μA, 100 μA, 150 μA
I _{C2}	20 μA - 180 μA (za / _{C/} =50 μA)	20 μA - 180 μA (za I _{C1} =50 μA)
	40 µА - 360 µА (za / _{Cl} =100 µА)	40 µA - 360 µA (za I _{CI} =100 µA)
	60 µА - 540 µА (za <i>I_{CI}=</i> 150 µА)	60 µА - 540 µА (za <i>I_(')=</i> 150 µА)
ICIC	25 μΑ	25 μΑ
β,	60, 90, 120	130, 170, 210
βs	20 - 60 (linearna promjena sa I _{PD})	45 - 130 (linearna promjena sa I _{PD})
	30 - 90 (lineama promjena sa I _{PD})	55 - 170 (linearna promjena sa I _{PD})
	40 - 120 (linearna promjena sa I _{PD})	70 - 210 (linearna promjena sa I_{PD})
β	60, 90, 120	130, 170, 210
V.	15 V, 25 V, 35 V	60 V, 90 V, 120 V
Ccs	5 fF - 60 fF (lineama promjena sa Ipp)	5 fF - 30 fF (linearna promjena sa I _{PD})
CPI	150 fF, 200 fF, 250 fF	200 fF, 250 fF, 300 fF
CHIO	20 fF, 40 fF, 60 fF	10 fF, 30 fF. 50 fF, 120 fF

Tabela 5.1 Vrijednosti parametara koji su korišćeni u MATLAB simulacijama.

Slika 5.1 Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{BIO} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

Slika 5.2 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C3} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

Slika 5.3 Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom: a) 0.6 μ m BiCMOS silicijumska tehnologija, b) 0.35 μ m BiCMOS silicijum-germanijumska tehnologija.

Slika 5.4 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

115

Slika 5.5 Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

Slika 5.6 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom: a) 0.6 μ m BiCMOS silicijumska tehnologija, b) 0.35 μ m BiCMOS silicijumska tehnologija.

5 Uporedna analiza frekventnog odziva i stabilnosti u 0.6 µm BiCMOS Si i 0.35 µm BiCMOS SiGe tehn.

117

Slika 5.7 Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

Slika 5.8 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom: a) 0.6 μ m BiCMOS silicijumska tehnologija, b) 0.35 μ m BiCMOS silicijumska tehnologija.

Slika 5.9 Zavisnost prirodne učestanosti ω_{bVCCA} od odnosa kontrolnih struja l_{Cl}/l_{C2} , sa kontrolnom strujom l_{Cl} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

Slika 5.10 Zavisnost faktora Q_{VCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom: a) 0.6 µm BiCMOS silicijumska tehnologija, b) 0.35 µm BiCMOS silicijum-germanijumska tehnologija.

Kada je u pitanju prirodna učestanost $\omega_{n\nu CCA}$, simulacije u MATLAB-u vode do sljedećih zaključaka:

- Prirodna učestanost ω_{0VCCA} u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji je veća od prirodne učestanosti u 0.6 µm BiCMOS silicijumskoj tehnologiji, za iste vrijednosti kontrolnih struja I_{C1} , I_{C2} i struje fotodiode I_{PD} ,
- Promjene kontrolne struje I_{Cl} imaju značajan uticaj na prirodnu učestanost $\omega_{n\nu CCA}$,
- Relativno male varijacije ekvivalentne kapacitivnosti C_{BIO} i kapacitivnosti fotodiode C_{PD} imaju mali uticaj na prirodnu učestanost ω_{DVCCA} ,
- Promjene strujnog pojačanja β i *Early*-jevog napona V_A ne utiču na prirodnu učestanost ω_{NVCCA} .

Kada je u pitanju faktor Q_{I'CCA}, simulacije u MATLAB-u vode do sljedećih zaključaka:

- Faktor Q_{FCCA} u 0.6 µm BiCMOS silicijumskoj tehnologiji je mnogo manji od faktora Q_{FCCA} u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, za iste vrijednosti kontrolnih struja I_{CI} , I_{C2} i struje fotodiode I_{PD} ,
- Promjene ekvivalentne kapacitivnosti C_{B10} imaju značajan uticaj na faktor Q_{ICCA} ,
- Promjene Early-jevog napona V_A i kontrolne struje I_{CI} imaju mali uticaj na faktor $Q_{I'CCA}$,
- Promjene strujnog pojačanja β i kapacitivnosti fotodiode C_{PD} ne utiču na faktor $Q_{I'CCA}$.

Kada su u pitanju najveće vrijednosti prirodne učestanosti $\omega_{DI'CCA}$, simulacije u MATLAB-u vode do sljedećeg zaključka:

 Najveće vrijednosti prirodne učestanosti ω_{0VCCA} odgovaraju većim kontrolnim strujama I_{C2} (manjim transimpedansama T) u 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji, nego u 0.6 μm BiCMOS silicijumskoj tehnologiji.

Kada su u pitanju najveće vrijednosti faktora Q_{ICCA} , simulacije u MATLAB-u vode do sljedećeg zaključka:

Najveće vrijednosti faktora Q_{VCCA} odgovaraju manjim kontrolnim strujama I_{C2} (većim transimpedansama) u 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji, nego u 0.6 μm BiCMOS silicijumskoj tehnologiji.

Maksimalna vrijednost faktora $Q_{I'CCA}$ za koju se može smatrati da je optički prijemnik sa promjenljivom transimpedansom stabilan, odnosno, da ima prihvatljiv maksimum u amplitudnofrekventnoj karakteristici (<3 dB) je $Q_{I'CCAmax}$ =1.6. Da bi prethodni uslov bio zadovoljen u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, potrebno je da ekvivalentna kapacitivnost C_{BI0} bude C_{BI0} =120 fF, slika 5.2b). Tako velika ekvivalentna kapacitivnost C_{BI0} značajno će smanjiti prirodnu učestanost $\omega_{0I'CCA}$ na maksimalno $\omega_{0I'CCAmax}$ =15 Grad/s, slika 5.1b), što se ne može

zanemariti. Sa druge strane, da bi uslov $Q_{VCCAmax}=1.6$ bio ispunjen u 0.6 μ m BiCMOS silicijumskoj tehnologiji, potrebno je da ekvivalentna kapacitivnost C_{BI0} bude $C_{BI0}=60$ fF, slika 5.2a). Za ovu vrijednost ekvivalentne kapacitivnosti C_{BI0} prirodna učestanost ω_{hICCA} će se smanjiti na maksimalno $\omega_{01CCAmax}$ =14.5 Grad/s, slika 5.1a), što ne predstavlja značajno smanjenje. Dakle, bez obzira na to što 0.35 µm BiCMOS silicijum-germanijumska tehnologija ima mnogo veću učestanost f_T na kojoj je strujno pojačanje β jednako jedinici (40 GHz) nego 0.6 μ m BiCMOS silicijumska tehnologija (14 GHz), ukoliko je cilj ostvariti istu maksimalnu vrijednost faktora $Q_{I'CCA}$, $Q_{I'CCAmax}=1.6$, maksimalna prirodna učestanost $\omega_{n'CCAmax}$ je približno jednaka u obje tehnologije. Frekvencijska kompenzacija naponom kontrolisanog strujnog pojačavača u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji može se izvršiti umetanjem kondenzatora između baze bipolarnog tranzistora Q10 i uzemljenja, ali uz značajno smanjenje frekventnog opsega. Znači, stabilnost strujnog pojačavača u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji se ne može poboljšati bez narušavanja ostalih performansi kola. Sa druge strane, kod naponom kontrolisanog strujnog pojačavača u 0.6 µm BiCMOS silicijumskoj tehnologiji ne postoji potreba za frekvencijskom kompenzacijom. Na osnovu prethodne analize, mogu se izvesti najvažniji zaključci:

- Prirodna učestanost ω_{0ICCA} se može povećati povećanjem kontrolne struje I_{CI} , bez značajnijeg uticaja na faktor Q_{ICCA} , u obje tehnologije.
- Faktor $Q_{I'CCA}$ se može smanjiti povećanjem ekvivalentne kapacitivnosti C_{BI0} bez značajnijeg uticaja na prirodnu učestanost ω_{nVCCA} , u obje tehnologije, uz pretpostavku da povećanje ekvivalentne kapacitivnosti C_{BI0} nije suviše veliko.

Naponom kontrolisan strujni pojačavač, a samim tim i optički prijemnik na bazi translinearne petlje sa bipolarnim tranzistorima u 0.6 μ m BiCMOS silicijumskoj tehnologiji, ima mogućnost poboljšanja stabilnosti bez narušavanja frekventnog opsega, odnosno, proširenja frekventnog opsega bez narušavanja stabilnosti. Takođe, evidentno je da je faktor Q_{ICC4} mnogo manji u 0.6 μ m BiCMOS silicijumskoj tehnologiji nego u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji, za iste vrijednosti kontrolnih struja I_{C1} , I_{C2} , i struje fotodiode I_{PD} . Dakle, strujni pojačavač u 0.6 μ m BiCMOS silicijumskoj tehnologiji ima mnogo bolju stabilnost od istog strujnog pojačavača u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji. Drugim riječima, pojačavač dizajniran u tehnologiji sa mnogo boljim parametrima (mnogo manje vrijeme prolaska manjinskih nosilaca naelektrisanja kroz bazu τ_b , mnogo veće strujno pojačanje β i mnogo veći *Early*-jev napon V_A) ima mnogo lošiju stabilnost.

6 EKSPERIMENTALNI REZULTATI, REZULTATI SIMULACIJA I KOMPARATIVNA ANALIZA

Optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima fabrikovan je u dvije tehnologije: 0.6 μ m BiCMOS silicijumskoj tehnologiji i 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji. Optički prijemnik sa promjenljivom transimpedansom u 0.6 μ m BiCMOS silicijumskoj tehnologiji realizovan je u dvije varijante. One se razlikuju u dodatnom filtriranju napona napajanja V_{DD} koje se obavlja primjenom jednostavnog *RC* filtra propusnika niskih učestanosti realizovanog na samom čipu. (*R*=6 Ω , *C*=22.8 pF), kao i u broju paralelno vezanih *pad*-ova preko kojih se dovodi napon napajanja V_{DD} i uzemljenje na aktivni dio kola unutar samog čipa. Radi jednostavnijeg praćenja analize ostvarenih rezultata, uvedene su sljedeće oznake čipova:

- tia105a. optički prijemnik sa promjenljivom transimpedansom u 0.6 μ m BiCMOS silicijumskoj tehnologiji bez dodatnog filtriranja napona napajanja V_{DD} unutar čipa, sa četiri paralelno vezana *pad*-a za napajanje V_{DD} i jednim *pad*-om za uzemljenje,
- tia107, optički prijemnik sa promjenljivom transimpedansom u 0.6 μ m BiCMOS silicijumskoj tehnologiji sa *RC* filtrom za dodatno filtriranje napona napajanja V_{DD} unutar čipa, sa tri paralelno vezana pada za napajanje V_{DD} i dva paralelno vezana *pad*-a za uzemljenje,
- WG_A2, optički prijemnik sa promjenljivom transimpedansom u 0.35 μm BiCMOS silicijumgennanijumskoj tehnologiji sa RC filtrom za dodatno filtriranje napona napajanja V_{DD} unutar čipa, sa tri paralelno vezana pad-a za napajanje V_{DD}, i dva paralelno vezana pad-a za uzemljenje.

Blok-šeme čipova tia105a, tia107 i WG_A2 koje uzimaju u obzir induktivnosti *bond*-žica. kapacitivnosti pad-ova i *RC* filtar prikazane su na slici 6.1. Mikrofotografije čipova sa optičkim prijemnicima tia105a, tia107 i WG_A2 prikazane su na slici 6.2. Aktivne površine čipova su:

- tia105a: 255 μm x 225 μm uključujući fotodiodu, što je 1.09 i 1.21 puta manje nego u [17] i [22], respektivno,
- tia107: 380 μm x 240 μm uključujući fotodiodu, što je 1.46 i 1.31 puta veće nego u [17] i [22], respektivno,

WG_A2: 100 µm x 150 µm uključujući fotodiodu, što je 4.18 i 4.62 puta manje nego u [17] i [22], respektivno.

Čip je zalijepljen za štampanu ploču i preko *pad*-ova i *bond*-ova povezan za metalizacije na štampanoj ploči. S obzirom da gornja površina čipa (*pad*-a) nije u istoj ravni sa metalizacijom na štampanoj ploči (razlika u visinama jednaka je debljini čipa koja je reda nekoliko stotina μ m + debljina sloja ljepila), *bond* žica ima oblik luka. Samim tim, *bond* žica predstavlja kalem čija je tipična induktivnost po jedinici dužine oko 1 nH/mm. Budući da *bond* žica može da ima dužinu i do 3 mm, induktivnost *bond* žice može da dostigne vrijednost od 3 nH. Na visokim frekvencijama reda nekoliko stotina MHz, ovolika induktivnost *bond* žice može predstavljati ozbiljan problem kada je u pitanju frekventni odziv i stabilnost optičkog prijemnika sa promjenljivom transimpedansom. Pokazuje se da najveći uticaj ima induktivnost *bond* žice preko koje se dovodi napajanje V_{DD} , a zatim induktivnost *bond* žice preko koje se dovodi uzemljenje. Da bi se smanjile pomenute induktivnosti, urađeno je sljedeće:

- Napajanje V_{DD} dovodi se na čip tia105a preko četiri paralelno vezana pad-a. Samim tim, odgovarajuća četiri bond-a vezana su paralelno, pa je ekvivalentna induktivnost bond-ova za napajanje četiri puta manja.
- Napajanje V_{DD} dovodi se na čip tia107 preko tri paralelno vezana pad-a, dok se uzemljenje dovodi preko dva paralelno vezana pad-a. Samim tim, odgovarajuća tri bond-a za napajanje V_{DD}, kao i odgovarajuća dva bond-a za uzemljenje, vezani su paralelno. Ekvivalentna induktivnost bond-ova za napajanje tri puta je manja, dok je ekvivalentna induktivnost bond-ova za uzemljenje dva puta manja.
- Napajanje V_{DD} dovodi se na čip WG_A2 preko tri paralelno vezana pad-a, dok se uzemljenje dovodi preko dva paralelno vezana pad-a. Samim tim, odgovarajuća tri bond-a za napajanje V_{DD}, kao i odgovarajuća dva bond-a za uzemljenje, vezani su paralelno. Ekvivalentna induktivnost bond-ova za napajanje tri puta je manja, dok je ekvivalentna induktivnost bond-ova za uzemljenje dva puta manja.

Sva mjerenja su obavljena na identičan način za sve čipove. Korišćen je izvor laserske svjetlosti talasne dužine λ =675 nm. Laserska svjetlost se fokusira prema fotodiodi pomoću *multimode* optičkog kabla pozicioniranog na *wafer prober*-u (Dodatak E), iznad fotodiode. Vrh optičkog kabla je konusnog oblika kako bi sva svjetlost iz optičkog kabla bila usmjerena prema aktivnoj površini fotodiode. Čipovi tia105a i tia107 sadrže PIN fotodiodu osmougaonog oblika [43], prečnika 50 µm, sa ARC slojem optimizovanim za crvenu svjetlost (660 nm< λ <680 nm). Osjetljivost ove PIN fotodiode je *R*=0.53 A/W za talasnu dužinu svjetlosti λ =675 nm, za koju su i obavljena sva mjerenja. Sa druge strane, osjetljivost fotodiode je *R*=0.17 A/W za talasnu dužinu svjetlosti λ =405 nm i *R*=0.48 A/W za talasnu dužinu svjetlosti λ =780 nm. Frekventni opseg fotodiode je 720 MHz za talasnu dužinu svjetlosti λ =660 nm [43]. Frekventni opseg fotodiode za

Slika 6.1 Blok-šeme čipova koje uzimaju u obzir induktivnosti *bond* žica, kapacitivnosti *pad*-ova i *RC* filtar: a) tia105a, b) tia107, c) WG_A2.

Slika 6.2 Mikrofotografije čipova: a) tia105a, b) tia107, c) WG_A2.

talasne dužine svjetlosti λ =405 nm i λ =780 nm nije izmjeren. Međutim, može se očekivati da je mnogo veći u odnosu na frekventni opseg transimpedansnog pojačavača na bazi translinearne petlje sa bipolarnim tranzistorima. Čip WG A2 sadrži PIN fotodiodu kvadratnog oblika [47], dimenzija 50 µm x 50 µm. Osjetljivost ove PIN fotodiode je R=0.4 A/W za talasnu dužinu svjetlosti λ =675 nm, za koju su i obavljena sva mjerenja. Sa druge strane, osjetljivost fotodiode je R=0.14 A/W za talasnu dužinu svjetlosti λ =410 nm i R=0.47 A/W za talasnu dužinu svjetlosti λ =785 nm. U svim mjerenjima korišćen je napon napajanja V_{DD} =5 V, referentni napon $V_{REF}=2.1$ V, polarizacioni napon $V_{BI}=2.65$ V, polarizacioni napon $V_{B2}=1.7$ V, polarizacioni napon $V_{B3}=1.1$ V, kontrolni napon $V_{CI}=0.5$ V, i kontrolni napon 0.2 V $< V_{C2}<1.8$ V. Kontrolni napon V_{C2} mijenja se sa korakom ΔV_{C2} =50 mV. Integrisani otpornici imaju nominalne otpornosti $R_1 = R_2 = 10$ k Ω i $R_F = 20$ k Ω . Otpornici su napravljeni od visoko-otpornog polikristalnog silicijuma. Integrisani kondenzator C_F ima nominalnu kapacitivnost 28 fF i napravljen je upotrebom *poly2-over-poly1* strukture. Kako je $V_{REF} < V_{OUT} < V_{OUT}$ i V_{OUTmax} - $V_{REF} \approx 1$ V, jednosmjerna struja I_{CVC} na izlazu naponom kontrolisanog strujnog pojačavača je $I_{CVC} = (V_{OUTmax} - V_{REF})/(2R_F) = 25 \ \mu A$ za sve transimpedanse T, (4.20). Kontrolna struja I_{Cl} je konstantna i iznosi $I_{Cl} = V_{Cl}/R_l = 50 \ \mu A$. Kontrolna struja $I_{C2} = V_{C2}/R_2$ je u opsegu 20 μ A<*I*_{C2}<180 μ A. Indirektno mjerenje transimpedanse *T* je izvršeno korišćenjem relacije T=S/R, gdje je S izmjerena foto-osjetljivost optičkog prijemnika, dok je R=0.53 A/W izmjerena osjetljivosti referentne fotodiode za talasnu dužinu svjetlosti λ =675 nm. Greške linearnosti E_L karakteristika izlaznog napona optičkog prijemnika u zavisnosti od struje fotodiode su postlayout simulirane upotrebom CADENCE-a. Mjerenje optičke snage upadne laserske svjetlosti izvršeno je upotrebom Ophir Orion/PD instrumenta za mjerenje optičke snage. Mjerenje jednosmjernih struja i napona izvršeno je upotrebom Keithley 2000 multimetra. Mjerenje frekventnih karakteristika optičkog prijemnika izvršeno je upotrebom Hewlett Packard 8753E network analyzer-a. Mjerenje vremenskog odziva optičkog prijemnika izvršeno je upotrebom Tektronix CSA8000 communication signal analyzer-a. Mjerenje šuma izvršeno je upotrebom Hewlett Packard E4402B spectrum analyzer-a.

Obavljena su mjerenja na ukupno devet uzoraka sva tri čipa preuzetih sa različitih pozicija na *wafer*-u. S obzirom da je ponovljivost rezultata mjerenja veoma dobra, prikazana je po jedna tipična serija rezultata mjerenja dinamičkih karakteristika (frekventni odziv, vremenski odziv, snaga šuma) za svaki od čipova tia105a, tia107 i WG_A2. Sa druge strane, budući da su rezultati mjerenja statičkih karakteristika (strujno-naponske karakteristike, linearnost, foto-osjetljivost, transimpedansa, naponski ofset, disipacija snage) veoma slične za svaki od čipova tia105a, tia107 i WG_A2, prikazani su rezultati mjerenja i *post-layout* simulacija samo za čip tia105a. Rezultati dobijeni eksperimentalnim putem i *post-layout* simulacijama prikazani su u tabeli 6.1 (statičke karakteristike) i tabeli 6.2 (dinamičke karakteristike). Poređenje performansi optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima sa prethodnim rješenjima optičkih prijemnika sa promjenljivom transimpedansom prikazano je u tabeli 6.3. optičkih prijemnika sa promjenljivom transimpedansom prikazano je u tabeli 6.3. Rezultati prikazani u tabelama 6.1 - 6.3. analizirani su u narednom dijelu.

Tabela 6.1 Eksperimentalni i simulirani (*) rezultati statičkih karakteristika optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (V_{C2} - kontrolni napon, E_L - greška linearnosti, T - transimpedansa, S - foto-osjetljivost. V_{OIT} - naponski ofset, P_{max} - maksimalna disipacija snage) za čip tia105a.

$V_{C2}[V]$	$E_{L}^{*}[\%]$	<i>T</i> [kΩ]	S mV/µW	V _{OFF} mV	P _{max} [mW]
0.2	-0.74	12875	6823.8	-2.00	2.19
0.25	2.38	5274	2795.0	-1.60	2.25
0.3	2.86	2546	1349.2	-2.00	2.35
0.35	3.47	1482	785.39	-1.95	2.46
0.4	3.55	869.1	460.64	-1.95	2.58
0.45	3.50	527.6	279.62	-1.88	2.71
0.5	3.51	330.4	175.1	-1.77	2.84
0.55	3.46	229.5	121.6	-1.64	2.97
0.6	3.33	159.7	84.63	-1.51	3.11
0.65	3.28	113.7	60.28	-1.38	3.24
0.7	3.20	80.47	42.65	-1.24	3.39
0.75	3.08	60.17	31.89	-1.10	3.54
0.8	2.91	45.31	24.02	-0.96	3.70
0.85	2.75	34.77	18.43	-0.82	3.86
0.9	2.56	27.51	14.58	-0.68	4.04
0.95	2.31	21.04	11.15	-0.54	4.22
1	2.07	16.91	8.96	-0.39	4.41
1.05	1.78	13.97	7.404	-0.26	4.62
1.1	1.48	11.08	5.873	-0.12	4.83
1.15	1.13	9.35	4.956	0.03	5.07
1.2	0.75	7.77	4.120	0.18	5.31
1.25	0.34	6.60	3.499	0.32	5.56
1.3	-0.07	5.50	2.913	0.48	5.82
1.35	-0.46	4.64	2.46	0.64	6.10
1.4	-0.89	3.90	2.070	0.79	6.39
1.45	-1.30	3.46	1.833	0.96	6.67*
1.5	-1.72	3.03	1.605	1.11	6.97*
1.55	-2.09	2.66	1.408	1.27	7,27*
1.6	-2.44	2.35	1.248	1.44	7.61*
1.65	-2.75	2.10	1.113	1.61	7.95*
1.7	-2.99	1.88	0.994	1.79	8.32*
1.75	-3.20	1.67	0.887	1.96	8.71*
1.8	-3.42	1.547	0.820	2.16	9.14*

Tabela 6.2 Eksperimentalni i simulirani (*) rezultati dinamičkih karakteristika optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima (f.3dB) - frekventni opseg, noise - snaga šuma za frekvenciju 50 MHz i rezolucioni frekventni opseg od 30 kHz).

$V_{C2}[\mathbf{V}]$		<i>f</i> _{-3dB} [MHz]		noise [dBm]			
	tia 105a	tia 107	WG_A2	tia 105a	tia 107	WG_A2	
0.2	22.15	22.07	slika 6.10c)	-58.04	-59.64	•	
0.25	50.23	57.22	slika 6.11c)	-60.09	-61.47	-61.01	
0.3	89.29	90.71	slika 6.12c)	-63.20	-64.14	-56.39	
0.35	128.5	115.85	88.25	-64.89	-65.79	-54.32	
0.4	165.3	132.42	137.22	-66.85	-67.51	-57.19	
0.45	195.9	147.03	194.17	-68.65	-69.32	-63.11	
0.5	217.4	162.43	236.43	-69.72	-70.12	-66.04	
0.55	228.8	173.14	282.43	-70.40	-70.98	-69.04	
0.6	242.3	183.52	320.86	-70.67	-71.18	-68.68	
0.65	256.9	204.91	337.93	-70.98	-71.21	-71.08	
0.7	273.0	218.76	358.49	-71.35	-71.81	-71.03	
0.75	287.9	234.77	361.37	-72.08	-72.08	-71.41	
0.8	302.5	249.47	364.86	-72.13	-72.16	- 72.36	
0.85	317.9	263.58	368.96	-72.45	-72.19	-73.10	
0.9	334.0	277.57	364.85	-71.96	-72.68	-73.06	
0.95	345.2	290.50	366.58	-72.07	-72.06	-72.42	
1	362.7	303.32	370.97	-7 1.59	-71.66	-73.17	
1.05	376.9	318.45	363.59	-70.79	-71.45	-73.59	
1.1	387.0	338.87	364.95	-71.03	-70.79	-73.29	
1.15	405.4	360.39	378.93	-69.94	-70.31	-73.81	
1.2	419.2	373.56	375.90	-69.82	-69.95	-73.36	
1.25	446.0	385.29	370.80	-69.91	-69.16	-73.17	
1.3	463.1	397.15	359.10	-69.47	-68.68	-73.64	
1.35	467.1*	408.41	357.27	-70.15	-68.83	-73.48	
1.4	461.8*	419.00		-70.45	-67.83	-73.38	
1.45	463.6*	429.16			-67.82	-73.44	
1.5	464.4*	445.00		-70.61	-68.21	-73.57	
1.55	459.7*			-72.34*			
1.6	468.2*			-72.40*			
1.65	475.9*		-	-72.45*			
1.7	478.2*			-72.49*			
1.75	483.5*			-72.52*			
1.8	476.8*			-72.54*			

	[6]	[7]	[12]	[14]	[15]	[16]	[17]	[22]	Predloženo rješenje
T _{min} [kΩ]	0.5	33.3	0.44	0.26	0.13	1.35	22.2	8.8	1.55
$T_{max}[k\Omega]$	19	150	9.3	265	270	465	1454	4745	12875
Tmax/Tmin	38	4.5	21.2	1024	2078	345	65.5	541	8323
S _{min} [mV/µ₩]		15.3		0.044	0.05	0.54	11.3	4.56	0.8196
S_{max} [mV/µW]		60.4		45***	100	186	890	2468	6824
Smax/Smin		4		1024	2078	345	78.8	541	8323
V _{OFF} [mV]		17.8		0.12		11.6	0.5	13.7	2.16
P _{max} [mW]	8*	8.3	37.5**	21.3	37.5	20	3.2	4.3	9.14
$\frac{f_{3dhmin} [MHz]}{(za T k\Omega)}$	85 (19)	20.8 (150)	241 (0.44)	250 (265)	260 (270)	145 (465)	8.1 (1454)	25.6 (4745)	22.2 (12875)
<i>Ĵ._{3dBmax}</i> [MHz] (za <i>T</i> [kΩ])	103 (8)	61.6 (33.3)	244 (9.3)				189 (22.2)	277.4 (8.8)	463.1 (5.5)
(Tf.3dB)max [TΩIIZ]	1.6	6	2.3	66.25	70.2	67.4	11.8	122	285
talasna dužina λ [nm]		638.3		653	650	660	660	660	675
tehnologija µm	0.35 CMOS	0.8	0.8	0.6	0.5	0.5	0.6	0.6	0.6
		BICMOS							

Tabela 6.3 Poredenje performansi optičkog prijemnika (čip tia105a) na bazi translinearne petlje sa bipolarnim tranzistorima sa prethodnim rješenjima optičkih prijemnika sa promjenljivom transimpedansom.

* - samo pojačavač, bez izlaznog bafera (disipacija snage izlaznog bafera je 43 mW).

** - samo ćelija za kontrolu pojačanja, bez transimpedansnog pojačavača

*** - podatak iz [16], ne iz [14]

6.1 Statičke karakteristike

6.1.1 Izlazni napon u funkciji struje fotodiode

Post-layout simulacije zavisnosti izlaznog napona od struje fotodiode optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima prikazane su na slici 6.3. S obzirom da su fotodioda i transimpedansni pojačavač integrisani na istom čipu, bez ikakvog strujnog priključka, nije bilo moguće eksperimentalno verifikovati ove karakteristike. Simulacije su izvršene upotrebom varijabilnog strujnog izvora I_{PD} , umjesto fotodiode. Osim karakteristika izlaznog napona u zavisnosti od struje fotodiode I_{PD} u cjelokupnom opsegu 0 A $<I_{PD}<500$ µA, slika 6.3a), takođe je prikazana i zavisnost izlaznog napona od struje fotodiode u opsegu 0 A $<I_{PD}<5$ µA, slika 6.3b) kako bi karakteristika bila jasnija za velike transimpedanse T. Kontrolni napon V_{CI} je konstantan, $V_{CI}=0.5$ V. Kontrolni napon V_{C2} mijenja se u opsegu 0.2 V $<V_{C2}<1.8$ V sa korakom $\Delta V_{C2}=50$ mV. Greška linearnosti E_L je računata u odnosu na optimalnu pravu koja prolazi kroz prvu ($I_{PD}=0$ A, $V_{OUT}=V_{REF}=2.1$ V) i posljednju tačku (I_{PD} , $V_{OUT}=3.1$ V) radnog dijela prenosne karakteristike $V_{OUT}=f(I_{PD})$. Greška linearnosti E_L , za opseg izlaznog napona 2.1 V $<V_{OUT}<3.1$ V optičkog prijemnika sa

a)

b)

Slika 6.3 Zavisnost izlaznog napona V_{OUT} optičkog prijemnika od struje fotodiode I_{PD} za kontrolni napon V_{C2} u opsegu 0.2 V<V_{C2}< 1.8 V, sa korakom Δ V_{C2}=50 mV, za čip tia105a: a) za struju fotodiode I_{PD} u opsegu 0 A<I_{PD}< 500 μ A, b) za struju fotodiode I_{PD} u opsegu 0 A<I_{PD}< 5 μ A.

Slika 6.4 Greška linearnosti E_L optičkog prijemnika u funkciji kontrolnog napona V_{CI} , za čip tia 105a.

promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima i za sve vrijednosti kontrolnog napona V_{C2} , je $|E_L|<3.55$ %. Ova vrijednost je nešto veća nego u [17] i [22] zbog mnogo većeg dinamičkog opsega transimpedansi *TDR*. Grafički prikaz greške linearnosti u funkciji od kontrolnog napona V_{C2} dat je na slici 6.4.

6.1.2 Transimpedansa

Indirektno izmjerena transimpedansa T u funkciji kontrolnog napona V_{C2} optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima prikazana je na slici 6.5. Transimpedansa T je u opsegu 1.55 k Ω (V_{C1} =0.5 V, V_{C2} =1.8 V)<T<12.9 M Ω (V_{C1} =0.5 V, V_{C2} =0.2 V). Slijedi da je dinamički opseg transimpedansi TDR=8323 (78.4 dB), što je 219, 1850, 393, 8.1, 4.1, 24.1, 127 i 15.4 više nego u [6], [7], [12], [14], [15], [16], [17] i [22], respektivno. Maksimalna izmjerena transimpedansa T_{max} =12.9 M Ω je 678, 85.5, 1384, 48.6, 47.7, 27.7, 8.85 i 2.71 puta veća nego u [6], [7], [12], [14], [15], [16], [17] i [22], respektivno. Na ovaj način je potvrđena opravdanost korišćenja naponom kontrolisanog strujnog pojačavača koji se bazira na translinearnoj petlji sa bipolarnim tranzistorima za dizajn optičkog prijemnika u cilju dobijanja što većeg dinamičkog opsega transimpedansi.

Slika 6.5 Transimpedansa T optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tia105a.

6.1.3 Foto-osjetljivost

Izmjerena jednosmjerna foto-osjetljivost S u funkciji kontrolnog napona V_{C2} optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima za talasnu dužinu svjetlosti λ =675 nm je prikazana na slici 6.6. Foto-osjetljivost optičkog prijemnika se nalazi u opsegu 0.82 mV/ μ W ($V_{CI}=0.5$ V, $V_{C2}=1.8$ V)<S<6824 mV/ μ W ($V_{CI}=0.5$ V, V_{C2}=0.2 V). Izmjereni dinamički opseg foto-osjetljivosti je Smax/Smin=8323 (78.4 dB), što je 2081, 8.1, 4, 24.12, 106 i 15.4 puta više nego u [7], [14], [15], [16], [17] i [22], respektivno. Maksimala izmjerena foto-osjetljivost Smax=6824 mV/µW je 113, 152, 68.2, 36.7, 7.66 i 2.76 puta veća nego u [7], [14], [15], [16], [17] i [22], respektivno. Uzimajući u obzir da je S=TR, moguće je izračunati foto-osjetljivost S za talasne dužine svjetlosti λ =405 nm i λ =780 nm kojima odgovara osjetljivost fotodiode R=0.17 A/W i R=0.48 A/W, respektivno. Izračunata foto-osjetljivost S za talasnu dužinu svjetlosti λ =405 nm je u opsegu 0.263 mV/ μ W (V_{CI} =0.5 V, $V_{C2}=1.8 \text{ V}$
S<2189 mV/ μ W ($V_{C1}=0.5 \text{ V}$, $V_{C2}=0.2 \text{ V}$). Izračunata foto-osjetljivost S za talasnu dužinu svjetlosti λ =780 nm je u opsegu 0.743 mV/ μ W (V_{CI} =0.5 V, V_{C2} =1.8 V)<S<6180 mV/ μ W $(V_{CI}=0.5 \text{ V}, V_{C2}=0.2 \text{ V})$. Na ovaj način je potvrđeno da je optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima pogodan za univerzalne optičke memorije.

Slika 6.6 Izmjerena foto-osjetljivost S optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za talasnu dužinu svjetlosti λ =675 nm, za čip tia105a.

6.1.4 Naponski ofset

Izmjereni naponski ofset V_{OFF} u funkciji kontrolnog napona V_{C2} optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima prikazan je na slici 6.7. Naponski ofset je $|V_{OFF}| < 2.16 \text{ mV}$ za sve kontrolne napone, čak i u slučaju veoma velikih transimpedansi T. Dakle, pokazano je da kolo za eliminaciju naponskog ofseta, poglavlje 4.4, veoma dobro funkcioniše. Izmjereni naponski ofset je 8.2, 5.4 i 6.3 puta manji nego u [7], [16] i [22], respektivno. Sa druge strane, ostvareni naponski ofset optičkog prijemnika je 18 puta veći od ekstremno malog ofseta u [14] kao i 4.3 veći nego u [17].

6.1.5 Maksimalna disipacija snage

Maksimalna disipacija snage P_{max} u funkciji kontrolnog napona V_{C2} optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima, izmjerena za maksimalni izlazni napon V_{OUTmax} =3.1 V, bez izlaznog opterećenja, prikazana je na slici 6.8. Maksimalna disipacija snage je u opsegu 2.19 mW (V_{C1} =0.5 V, V_{C2} =0.2 V, T=12.9 MΩ)< P_{max} <9.14 mW (V_{C1} =0.5 V, V_{C2} =1.8 V, T=1.55 kΩ). Izvor laserske svjetlosti nije mogao da obezbijedi svjetlost dovoljno velike optičke snage kako bi se obezbijedila DC

Slika 6.7 Izmjereni naponski ofset V_{OFF} optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tia 105a.

Slika 6.8 Maksimalna disipacija snage P_{max} optičkog prijemnika u funkciji kontrolnog napona V_{C2} , za čip tial05a.

radna tačka (I_{PDmax} , V_{OUTmax}) za kontrolni napon V_{C2} u opsegu 1.45 V $< V_{C2} < 1.8$ V. Iz tog razloga, za opseg kontrolnog napona 1.45 V $< V_{C2} < 1.8$ V, izvršene su *post-layout* simulacije u CADENCE-u. Maksimalna disipacija snage P_{max} opada sa porastom foto-osjetljivosti S jer tada i struja fotodiode I_{PD} opada. Maksimalna izmjerena potrošnja je 2.33, 4.10 i 2.18 puta manja nego u [14], [15] i [16]. Sa druge strane, maksimalna izmjerena potrošnja je 1.10, 2.86 i 2.13 puta veća nego u [7], [17] i [22], zbog značajno većeg dinamičkog opsega transimpedansi, odnosno, zbog mnogo manje minimalne transimpedanse T_{min} kod optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima koja zahtijeva mnogo veću struju fotodiode I_{PD} .

6.2 Dinamičke karakteristike

6.2.1 Frekventni odziv

Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i network analyzer-a korišćenog za mjerenje frekventnog odziva data je na slici 6.9. Ulazna impedansa network analyzer-a može se predstaviti rednom vezom kondenzatora $C_{NA} \approx 100$ nF i otpornika R_{NA} =50 Ω . U cilju jednosmjerne polarizacije izlaznog stepena optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima, paralelno network analyzer-u dodat je otpornik $R_{DCB}=100 \Omega$. Na slici 6.9 C_P predstavlja kapacitivnost pad-a, dok L_{BW} predstavlja induktivnost bond žice. U realnim sistemima za optičko memorisanje, kolo za digitalnu obradu signala koje se vezuje za izlaz optičkog prijemnika ima tipičnu ulaznu kapacitivnost 10 pF. Da bi se obezbijedili identični uslovi po pitanju kapacitivnog opterećenja na izlazu optičkog prijemnika, dodato je kapacitivno opterećenje C_L =8.2 pF. Ova kapacitivnost zajedno sa parazitnim kapacitivnostima na štampanoj ploči obezbjeđuje kapacitivno opterećenje na izlazu optičkog prijemnika od približno 10 pF. S obzirom da network analyzer koji je korišćen za mjerenje frekventnog odziva ima ulaznu otpornost R_{NA} =50 Ω , izlazna struja optičkog prijemnika je ograničena umetanjem otpornika R_{CL} =190 Ω između izlaza optičkog prijemnika i otpornika $R_{DCB}=100 \Omega$ koji je dodat paralelno network analyzer-u. Otpornik R_{CL} nalazi se na samom čipu i realizovan je korišćenjem nisko-otpornog polikristalnog silicijuma. Kao posljedica, izlazni napon koji je snimljen pomoću network analyzer-a je umanjen faktorom $(R_{NA}||R_{DCB})/(R_{CL}+R_{NA}||R_{DCB})=0.147$ preko naponskog razdjelnika koga čine otpornici R_{CL} i $R_{NA} || R_{DCB}$, slika 6.9. Izvor laserske svjetlosti nije mogao da obezbijedi svjetlost dovoljno velike optičke snage kako bi se dobila odgovarajuća DC radna tačka za opseg kontrolnog napona 1.35 V<V_{C2}<1.8 V. Iz tog razloga, za ovaj opseg kontrolnog napona izvršene su post-layout simulacije u CADANCE-u za čip tia105a (u tabeli 6.2 ovi rezultati su obilježeni simbolom "*"). Izmjereni frekventni odzivi optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima za talasnu dužinu svjetlosti λ =675 nm, za kontrolni napon $V_{C1}=0.5$ V i za kontrolne napone 0.2 V $< V_{C2}<1.3$ V za tia105a, 0.2 V $< V_{C2}<1.5$ V za tia107, i 0.2 V $< V_{C2}<1.35$ V za WG_A2, sa korakom $\Delta V_{C2}=50$ mV, prikazani su na slikama 6.10-6.36. Izvor laserske svjetlosti nije mogao da obezbijedi svjetlost dovoljno velike optičke snage kako bi se obezbijedila odgovarajuća DC radna tačka za opseg kontrolnog napona 1.35 V $< V_{C2}<1.8$ V za tia105a, 1.55 V $< V_{C2}<1.8$ V za tia107 i 1.4 V $< V_{C2}<1.8$ V za WG_A2.

Slika 6.9 Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i network analyzer-a.

Slika 6.10 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.2 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.11 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.25 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.12 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =0.3 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.13 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.35 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.14 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.4 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.15 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.45 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.16 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =0.5 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.17 lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.55 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.18 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.6 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.19 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.65 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.20 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.7 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.21 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.75 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.22 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.8 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.23 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.85 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.24 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.9 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.25 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =0.95 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.26 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =1 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.27 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.05 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.28 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.1 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.29 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =1.15 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.30 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =1.2 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.31 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.25 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.32 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.3 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.33 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =1.35 V: a) tia107, b) WG_A2.

Slika 6.34 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.4 V: a) tia107.

Slika 6.35 lzmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.45 V, tia107.

Slika 6.36 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.5 V, tia107.

Izmjereni frekventni opseg optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima je 22.15 MHz (V_{CI} =0.5 V, V_{C2} =0.2 V, T=12.9 M Ω)<f.3dB<463.1 MHz (V_{CI} =0.5 V, V_{C2} =1.3 V, T=5.5 k Ω) za tia105a. Najveći frekventni opseg je 4.50, 7.52, 1.90, 2.45 i 1.67 puta veći nego u [6], [7], [12], [17] i [22], respektivno. Uporedna analiza pokazuje sljedeće:

- Za foto-osjetljivost od 11.2 mV/µW (V_{Cl}=0.5 V, V_{C2}=0.95 V, T=21 kΩ), frekventni opseg je f_{-3dB}=345.2 MHz, što je 1.83 i 1.86 puta više nego u [17] i [22], respektivno, za približno istu foto-osjetljivost.
- Za foto-osjetljivost od 31.9 mV/µW (V_{Cl}=0.5 V, V_{C2}=0.75 V, T=60.2 kΩ), frekventni opseg je f_{-3dB}=287.9 MHz, što je 1.88 i 1.41 puta više nego u [17] i [22], respektivno, za približno istu foto-osjetljivost.
- Za foto-osjetljivost od 42.7 mV/µW (V_{CI}=0.5 V, V_{C2}=0.7 V, T=80.5 kΩ), frekventni opseg je f_{-3dB}=273 MHz, što je 4.53, 1.09 i 1.42 puta više nego u [7], [14] i [22], respektivno, za približno istu foto-osjetljivost.
- Za foto-osjetljivost od 60.3 mV/µW (V_{CI}=0.5 V, V_{C2}=0.65 V, T=113.7 kΩ), frekventni opseg je f_{-3dB}=256.9 MHz, što je 12.35, 2.5 i 1.5 puta više nego u [7], [17] i [22], respektivno, za približno istu foto-osjetljivost.
- Za foto-osjetljivost od 175.1 mV/µW (V_{CI}=0.5 V, V_{C2}=0.5 V, T=330.4 kΩ), frekventni opseg je f_{-3dB}=217.4 MHz, što je 1.5 puta više nego u [16] za približno istu foto-osjetljivost i 8.36 puta više nego u [17] za 1.17 puta manju foto-osjetljivost.
- Za najveću foto-osjetljivost S=6824 mV/μW (V_{Cl}=0.5 V, V_{C2}=0.2 V), frekventni opseg je f._{3dB}=22.15 MHz, što je 2.73 puta više za 7.67 puta veću foto-osjetljivost nego u [17] i 1.15 puta manje za 2.76 puta veću foto-osjetljivost nego u [22].

Slični rezultati se mogu očekivati i za frekventni opseg optičkog prijemnika za talasne dužine svjetlosti 405 nm i 780 nm, s obzirom da naponom kontrolisan strujni pojačavač određuje frekventni opseg optičkog prijemnika.

Zavisnost izmjerenog frekventnog opsega od foto-osjetljivosti S optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima i prethodnih rješenja optičkih prijemnika sa promjenljivom transimpedansom prikazana je na slici 6.37. Može se uočiti da optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima ima veći frekventni opseg za svaku fotoosjetljivost S u odnosu na ostale optičke prijemnike sa promjenljivom transimpedansom. Izuzetak je [15], gdje je ostvareni frekventni opseg za foto-osjetljivost od $S=100 \text{ mV/}\mu\text{W}$ oko 10 % veći u odnosu na frekventni opseg optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima (260 MHz u odnosu na 235 MHz). Prethodno je ostvareno uz mnogo veću disipaciju snage u odnosu na optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima.

Slika 6.37 Zavisnost izmjerenog frekventnog opsega od foto-osjetljivosti optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima i prethodnih optičkih prijemnika sa promjenljivom transimpedansom.

Najveći proizvod transimpedanse i frekventnog opsega Tf_{-3dB} je 285 T Ω Hz (V_{Cl} =0.5 V, V_{C2} =0.2 V), što je 178, 47.5, 124, 4.3, 4.06, 4.23, 24.2 i 2.34 puta više nego u [6], [7], [12], [14], [15], [16], [17] i [22], respektivno.

Zavisnost frekventnog opsega $f_{.3dB}$ optičkog prijemnika od kontrolnog napona V_{C2} za sva tri čipa prikazana je na slici 6.38. Uočava se da je frekventni opseg $f_{.3dB}$ optičkog prijemnika tia107 manji od frekventnog opsega $f_{.3dB}$ optičkog prijemnika tia105a u najvećem dijelu opsega kontrolnog napona V_{C2} . Izuzetak su opsezi kontrolnog napona V_{C2} koji odgovaraju najvećim i najmanjim transimpedansama T (0.2 V V_{C2} <0.3 V i V_{C2} >1.5 V), gdje su frekventni opsezi $f_{.3dB}$ približno isti. Ova razlika u frekventnim opsezima čipova koji imaju isti aktivni dio, i koji su realizovani u istoj tehnologiji, može se objasniti analizom slike 6.1, kada se aktivni dio kola čipova tia105a i tia107 prikaže u obliku modela za male signale koji je prikazan na slici 4.11. Sa druge strane, uočava se da je frekventni opseg $f_{.3dB}$ optičkog prijemnika WG_A2 veći od frekventnog opsega preostala dva čipa za kontrolne napone $0.5 V < V_{C2} < 1 V$. Ovo je u saglasnosti sa zaključcima iz poglavlja 5. Međutim, za kontrolne napone V_{C2} >0.7 V, frekventni opseg $f_{.3dB}$ optičkog prijemnika WG_A2 ulazi u zasićenje, $f_{.3dB} \approx 360$ MHz, što se može objasniti ograničenim frekventnim opsegom fotodiode.

U poglavlju 5 data je uporedna analiza frekventnog odziva i stabilnosti optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima realizovanog u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Rezultati do kojih se došlo na osnovu matematičkih modela i simulacija u MATLAB-u potvrđeni

Slika 6.38 Frekventni opseg $f_{.3dB}$ optičkog prijemnika u funkciji kontrolnog napona V_{C2} .

su i eksperimentalno, slike 6.39-6.44. Uporedna analiza pokazuje sljedeće:

- Izmjereni frekventni odziv optičkog prijemnika za transimpedansu T=12.9 MΩ, u obje tehnologije, prikazan je na slici 6.39. Nema maksimuma u frekventnom odzivu optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji, što znači da odgovarajući faktor Q_{VCCA} ima malu vrijednost. Sa druge strane, postoji izražen maksimum u izobličenom frekventnom odzivu optičkog prijemnika u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, što znači da odgovarajući faktor Q_{VCCA} ima veliku vrijednost.
- Izmjereni frekventni odziv optičkog prijemnika za transimpedansu T=2.5 MΩ, u obje tehnologije, prikazan je na slici 6.40. Nema maksimuma u frekventnom odzivu optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji, što znači da odgovarajući faktor Q_{VCCA} ima malu vrijednost. Sa druge strane, postoji izražen maksimum u frekventnom odzivu optičkog prijemnika (~10 dB) u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, što znači da odgovarajući faktor Q_{VCCA} ima dosta veliku vrijednost.
- Izmjereni frekventni odziv optičkog prijemnika za transimpedansu T=869.1 k Ω , u obje tehnologije, prikazan je na slici 6.41. U frekventnom odzivu optičkog prijemnika u 0.6 μ m BiCMOS silicijumskoj tehnologiji postoji maksimum od 3.1 dB, što znači da je odgovarajući faktor Q_{VCCA} veći u odnosu na prethodne slučajeve. Sa druge strane, u frekventnom odzivu optičkog prijemnika u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji postoji pik od 4.2 dB, što znači da odgovarajući faktor Q_{VCCA} ima veliku vrijednost, ali manju nego u prethodnim slučajevima.

- Izmjereni frekventni odziv optičkog prijemnika za transimpedansu $T=330.4 \text{ k}\Omega$, u obje tehnologije, prikazan je na slici 6.42. U frekventnom odzivu optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji postoji maksimum od 3.4 dB, što znači da odgovarajući faktor Q_{VCCA} ima približno jednaku vrijednost kao u prethodnom slučaju. Sa druge strane, u frekventnom odzivu optičkog prijemnika u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji postoji maksimum od 1.6 dB, što znači da odgovarajući faktor Q_{VCCA} ima manju vrijednost nego u prethodnim slučajevima.
- Izmjereni frekventni odziv optičkog prijemnika za transimpedansu T=16.9 kΩ, u obje tehnologije, prikazan je na slici 6.43. U frekventnom odzivu optičkog prijemnika u 0.6 µm BiCMOS silicijumskoj tehnologiji postoji pik od 1.4 dB, što znači da odgovarajući faktor Q_{I'CCA} ima manju vrijednost nego u prethodnom slučaju. Sa druge strane, u frekventnom odzivu optičkog prijemnika u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji nema maksimuma, što znači da odgovarajući faktor Q_{I'CCA} ima manju vrijednost nego u prethodnom slučaju.
- Izmjereni frekventni odziv optičkog prijemnika za transimpedansu $T=5.5 \text{ k}\Omega$, u obje tehnologije, prikazan je na slici 6.44. U frekventnom odzivu optičkog prijemnika nema maksimuma, za obje tehnologije, što znači da odgovarajući faktori Q_{VCCA} imaju male vrijednosti.

Najznačajniji zaključci koji se mogu izvesti na osnovu izmjerenih rezultata su:

- Najizraženiji maksimumi u frekventnom odzivu (najveće vrijednosti faktora Q_{ICCA}) optičkog prijemnika u 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji su mnogo veći nego u slučaju optičkog prijemnika u 0.6 μm BiCMOS silicijumskoj tehnologiji,
- Najizraženiji maksimumi u frekventnom odzivu optičkog prijemnika se javljaju za veće transimpedanse T (manje kontrolne napone V_{C2}) u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji u odnosu na transimpedanse T (kontrolne napone V_{C2}) u 0.6 µm BiCMOS silicijumskoj tehnologiji.

Prethodni zaključci u potpunosti potvrđuju matematičke modele prikazane relacijama (4.47) i (4.49) sa odgovarajućim MATLAB simulacijama datim u poglavlju 5. Čip sa optičkim prijemnikom sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima u lošijoj 0.6 μ m BiCMOS silicijumskoj tehnologiji posjeduje bolje frekventne karakteristike i stabilnost u odnosu na isti čip u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji koja je mnogo skuplja. Kada je u pitanju frekventni odziv, korisni dinamički opseg transimpedansi u 0.6 μ m BiCMOS silicijumskoj tehnologiji je od 1.55 k Ω do 12.9 M Ω , dok je u 0.35 μ m BiCMOS silicijum-germanijumskoj tehnologiji korisni dinamički opseg transimpedansi do svega 869.1 k Ω . Dakle, u ovoj specifičnoj aplikaciji mnogo jeftinija tehnologija daje 17.5 puta veći korisni dinamički opseg transimpedansi.

Slika 6.39 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i za kontrolne napone V_{Cl}=0.5 V i V_{Cl}=0.2 V (T=12.9 MΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

Slika 6.40 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{Cl} =0.3 V (T=2.5 MΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

Slika 6.41 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.4 V (T=869.1 kΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

Slika 6.42 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.5 V (T=330.4 Ω), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

Slika 6.43 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{C2} =1 V (T=16.9 kΩ), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

Slika 6.44 Izmjereni frekventni odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i za kontrolne napone V_{Cl} =0.5 V i V_{Cl} =1.3 V (T=5.5 k Ω), u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji.

6.2.2 Vremenski odziv

Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i communication signal analyzer-a data je na slici 6.45. Communication signal analyzer ima ulaznu otpornost R_{CSA} =50 Ω . U cilju jednosmjerne polarizacije izlaznog stepena optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima, paralelno communication signal analyzer-u dodat je otpornik $R_{DCB}=100 \Omega$. Na slici 6.45 C_P predstavlja kapacitivnost pad-a, dok L_{BW} predstavlja induktivnost bond žice. U realnim sistemima za optičko memorisanje, kolo za digitalnu obradu signala koje se vezuje za izlaz optičkog prijemnika ima tipičnu ulaznu kapacitivnost 10 pF. Da bi se obezbijedili identični uslovi po pitanju kapacitivnog opterećenja na izlazu optičkog prijemnika, dodaje se kapacitivno opterećenje C_L =8.2 pF. Ova kapacitivnost zajedno sa parazitnim kapacitivnostima na štampanoj ploči obezbjeđuje kapacitivno opterećenje na izlazu optičkog prijemnika od približno 10 pF. S obzirom da communication signal analyzer korišćen za mjerenje vremenskog odziva ima ulaznu otpornost R_{CSA} =50 Ω , izlazna struja optičkog prijemnika je ograničena umetanjem otpornika R_{CL} =190 Ω između izlaza optičkog prijemnika i otpornika $R_{DCB}=100 \Omega$ dodatog u paralelu sa communication signal analyzer-om. Otpornik R_{CL} nalazi se na samom čipu i realizovan je korišćenjem nisko-otpornog polikristalnog silicijuma. Kao posljedica, izlazni napon koji je snimljen pomoću communication signal analyzer-a je umanjen faktorom $(R_{CSA} \| R_{DCB})/(R_{CL} + R_{CSA} \| R_{DCB}) = 0.147$ preko naponskog razdjelnika koga čine otpornici R_{CL} i $R_{CSA} || R_{DCB}$, slika 6.45. Dakle, prava vrijednost napona na izlazu optičkog prijemnika se dobija množenjem izmjerene vrijednosti sa $1+R_{CL}/(R_{CSA}||R_{DCB})=6.8$. Izmjereni vremenski odzivi optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima za talasnu dužinu svjetlosti λ =675 nm za kontrolni napon V_{CI} =0.5 V i za kontrolne napone $0.2 \text{ V} < V_{C2} < 1.35 \text{ V}$ za tial05a, 0.2 $\text{V} < V_{C2} < 1.4 \text{ V}$ za tial07, i 0.3 $\text{V} < V_{C2} < 1.25 \text{ V}$ za WG_A2, sa korakom ΔV_{C2} =50 mV, su prikazani na slikama 6.46-6.70. Izvor laserske svjetlosti nije mogao da obezbijedi svjetlost dovoljno velike optičke snage kako bi se obezbijedila odgovarajuća DC radna tačka za opseg kontrolnog napona 1.4 V<V_{C2}<1.8 V za tia105a, 1.45 V<V_{C2}<1.8 V za tia107, i $1.3 V < V_{C2} < 1.8 V za WG_A2.$

Slika 6.46 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.2 V: a) tia105a, b) tia107.

Slika 6.47 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.25 V: a) tia105a, b) tia107.

Slika 6.48 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{C2} =0.3 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.50 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{Cl} =0.5 V i V_{Cl} =0.4 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.51 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{CI}=0.5 V i V_{CI}=0.45 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.52 lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.5 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.53 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.55 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.54 lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.6 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.55 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{CI}=0.5 V i V_{CI}=0.65 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.56 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.7 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.57 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =0.75 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.58 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{CI}=0.5 V i V_{CI}=0.8 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.59 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =0.85 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.60 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{C1} =0.5 V i V_{C2} =0.9 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.61 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{Cl}=0.5 V i V_{Cl}=0.95 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.62 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.63 lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.05 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.64 lzmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.1 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.65 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{Cl}=0.5 V i V_{Cl}=1.15 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.66 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{CI}=0.5 V i V_{CI}=1.2 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.67 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{CI}=0.5 V i V_{C2}=1.25 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.68 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{C2} =1.3 V: a) tia105a, b) tia107.

Slika 6.69 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ=675 nm i kontrolne napone V_{CI}=0.5 V i V_{CI}=1.35 V: a) tia105a, b) tia107.

Slika 6.70 Izmjereni vremenski odziv optičkog prijemnika za talasnu dužinu svjetlosti λ =675 nm i kontrolne napone V_{CI} =0.5 V i V_{CI} =1.4 V: a) tia 107.
6.2.3 Snaga šuma

Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i *spectrum analyzer-a* data je na slici 6.71, gdje C_P predstavlja kapacitivnost *pad-a*, dok L_{BW} predstavlja induktivnost *bond* žice. S obzirom da *spectrum analyzer* koji je korišćen za mjerenje snage šuma ima ulaznu otpornost R_{SA} =50 Ω , izlazna struja optičkog prijemnika je ograničena umetanjem otpornika R_{CL} =190 Ω između izlaza optičkog prijemnika i *spectrum analyzer-a*. Otpornik R_{CL} nalazi se na samom čipu i realizovan je korišćenjem nisko-otpornog polikristalnog silicijuma. Kao posljedica, snaga šuma koja je snimljena pomoću *spectrum analyzer-a* je umanjena faktorom $R_{SA}/(R_{CL}+R_{SA})=0.208$ preko naponskog razdjelnika koga čine otpornici R_{CL} i R_{SA} , slika 6.71. Uz to, *spectrum analyzer* ima sopstveni šum. Dakle, prava vrijednost snage šuma na izlazu optičkog prijemnika se dobija dodavanjem 20log(1+ R_{CL}/R_{SA})=13.7 dBm na izmjerenu vrijednost i oduzimanjem snage šuma *spectrum analyzer-a*. Preciznije, ako je P_{sa} snaga šuma koji je snimljen pomoću *spectrum analyzer-a* i P_{saun} snaga šuma *spectrum analyzer-a* (\approx -95 dBm), tačna vrijednost snage šuma P_{nout} na izlazu optičkog prijemnika je $P_{nout}=13.7$ dBm+10*log*(10^{$P_{SaU10-10}P_{Sau10}$). Snaga šuma P_{sa} koji je snimljen pomoću *spectrum analyzer-a* računa se kao:}

$$P_{xa}[dBm] = 10 \log \left[\frac{\frac{1}{50 \Omega} \int_{s0 \text{ MHz}-RBW/2}^{s0 \text{ MHz}+RBW/2}}{1 \text{ mW}} \right], \tag{6.1}$$

pri čemu je *RBW* rezolucioni frekventni opseg, dok je $V_{*}^{2}(f)$ spektralna gustina šuma [62]. Na ovaj način dobija se da snaga šuma za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.65$ V (T=113.7 k Ω), za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, iznosi -70.98 dBm. Ovaj rezultat je 2.08 dBm bolji nego u [17], za transimpedansu T=108.3 k Ω i 3.18 dBm bolji nego u [22] za transimpedansu T=83.2 k Ω . Izmjerena snaga šuma za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.5$ V (T=330.4 k Ω), za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz iznosi -69.72 dBm. Ovaj rezultat je 2.32 dBm bolji nego u [17] za transimpedansu T=299.7 k Ω i 4.82 dBm bolji nego u [22] za transimpedansu T=236.9 k Ω . Izmjerena snaga šuma optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolni napon $V_{CI}=0.5$ V i za kontrolne napone 0.2 V $<V_{C2}<1.5$ V za tia105a, 0.2 V $<V_{C2}<1.5$ V za tia107, i 0.25 V $<V_{C2}<1.5$ V za WG_A2, sa korakom $\Delta V_{C2}=50$ mV, su prikazani na slikama 6.72-6.98. Izvor laserske svjetlosti nije mogao da obezbijedi svjetlost dovoljno velike optičke snage kako bi se obezbijedila odgovarajuća DC radna tačka za opseg kontrolnog napona 1.55 V $<V_{C2}<1.8$ V.

Slika 6.71 Ekvivalentna šema električnog kola koje se nalazi između izlaza optičkog prijemnika i spectrum analyzer-a.

b)

Slika 6.72 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{Cl}=0.5 V i V_{Cl}=0.2 V: a) tia105a, b) tia107.

Slika 6.73 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{CI}=0.25$ V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.74 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.3 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.75 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.35 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.76 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.4$ V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.77 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.45 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.78 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{C2}=0.5$ V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.79 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{Cl}=0.5 V i V_{C2}=0.55 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.80 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{Cl}=0.5 V i V_{Cl}=0.6 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.81 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{CI}=0.65$ V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.82 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.7 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.83 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =0.75 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.84 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone $V_{Cl}=0.5$ V i $V_{C2}=0.8$ V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.85 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{CI} =0.85 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.86 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{CI}=0.5 V i V_{CI}=0.9 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.87 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{CI} =0.95 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.88 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{Cl}=0.5 V i V_{Cl}=1 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.89 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =1.05 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.90 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =1.1 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.91 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{Cl}=0.5 V i V_{C2}=1.15 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.92 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{CI} =1.2 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.93 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone $V_{CI}=0.5$ V i $V_{CI}=1.25$ V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.94 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{C2} =1.3 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.95 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI}=0.5 V i V_{C2}=1.35 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.96 lzmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{CI} =0.5 V i V_{CI} =1.4 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.97 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg *RBW*=30 kHz, za kontrolne napone V_{CI}=0.5 V i V_{CI}=1.45 V: a) tia107, b) WG_A2.

Slika 6.98 Izmjerena snaga šuma optičkog prijemnika za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz, za kontrolne napone V_{Cl}=0.5 V i V_{C2}=1.5 V: a) tia105a, b) tia107, c) WG_A2.

Slika 6.99 Snaga šuma optičkog prijemnika za frekvenciju 50 MHz i rezolucioni frekventni opseg RBW= 30 kHz u funkciji kontrolnog napona V_{C2} .

Zavisnost snage šuma optičkog prijemnika od kontrolnog napona V_{C2} za sva tri čipa prikazana je na slici 6.99. Iz tabele 6.2 (ili sa grafika) se može uočiti da snaga šuma za frekvenciju od 50 MHz i rezolucioni frekventni opseg RBW=30 kHz opada sa porastom kontrolnog napona V_{C2} (kontrolne struje I_{C2}), odnosno, sa smanjenjem transimpedanse T, za opseg transimpedansi 80.5 k Ω <T<12.875 M Ω (0.2 V< V_{C2} <0.7 V). Sa daljim smanjenjem transimpedanse T, snaga šuma postaje približno konstantna. Ovo je u veoma dobrom slaganju sa matematičkim modelom za šum, poglavlje 4.7.

7 ZAKLJUČAK

Doktorska disertacija pod nazivom "Optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petlje sa bipolarnim tranzistorima" predstavlja prvi doktorat iz oblasti projektovanja integrisanih kola koji je realizovan u Crnoj Gori, na Elektrotehničkom fakultetu Univerziteta Crne Gore, u saradnji sa *Institute of Electrodynamics. Microwave and Circuit Engineering, Faculty of Electrical Engineering and Information Technology, Vienna University of Technology.* U okviru ove doktorske disertacije realizovan je optički prijemnik sa promjenljivom transimpedansom u integrisanoj BiCMOS tehnologiji koji je namijenjen za univerzalne optičke memorije (CD, DVD, Blu-Ray). Promjenljiva transimpedansa optičkog prijemnika ostvarena je korišćenjem strujnog pojačavača na bazi translinearne petlje sa bipolarnim tranzistorima. Transimpedansa je proporcionalna četvrtom stepenu količnika dvije kontrolne struje, odnosno, četvrtom stepenu količnika dva kontrolna napona. Ovakva funkcionalna zavisnost transimpedanse od kontrolnih parametara omogućava jednostavnu promjenu transimpedanse, odnosno, foto-osjetljivosti optičkog prijemnika. Fotodioda PIN tipa je integrisana na istom čipu.

Optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima je isprojektovan, fabrikovan u dvije integrisane tehnologije (0.6 μm BiCMOS silicijumskoj tehnologiji i 0.35 μm BiCMOS silicijum-germanijumskoj tehnologiji), i eksperimentalno valorizovan. Aktivne površine čipova, uključujući fotodiodu su: 255 μm x 225 μm (tia105a), 380 μm x 240 μm (tia107) i 100 μm x 150 μm (WG_A2).

Na osnovu rezultata mjerenja i odgovarajućih simulacija, ostvarene su sljedeće performanse optičkog prijemnika realizovanog u 0.6 µm BiCMOS silicijumskoj tehnologiji:

- Greška linearnosti strujno-naponskih karakteristika je manja od 3.55 %, što je na nivou greške linearnosti postojećih optičkih prijemnika sa promjenljivom transimpedansom,
- Dinamički opseg transimpedansi (foto-osjetljivosti) je 8323 (78.4 dB), što je 4.1 puta veća vrijednost u odnosu na do sada najveći dinamički opseg transimpedansi (foto-osjetljivosti) optičkih prijemnika sa promjenljivom transimpedansom,
- Maksimalna transimpedansa je 12.9 MΩ, što je 2.7 puta veća vrijednost u odnosu na do sada najveću transimpedansu optičkih prijemnika sa promjenljivom transimpedansom,

- Maksimalna foto-osjetljivost je 6824 mV/µW, što je 2.7 puta veća vrijednost u odnosu na do sada najveću foto-osjetljivost optičkih prijemnika sa promjenljivom transimpedansom,
- Naponski ofset je manji od 2.16 mV, što je najmanje 5 puta manja vrijednost u odnosu na naponski ofset optičkih prijemnika sa promjenljivom transimpedansom na bazi strujnih pojačavača,
- Maksimalna disipacija snage je manja od 10 mW, što je najmanje 2 puta manja vrijednost u odnosu na disipaciju snage optičkih prijemnika sa promjenljivom transimpedansom na bazi strujnih pojačavača,
- Frekventni opseg je 463 MHz za transimpedansu od 5.5 kΩ, odnosno 22.15 MHz za transimpedansu od 12.9 MΩ,
- Proizvod transimpedanse i frekventnog opsega je 285 TΩHz, što je 2.3 puta veća vrijednost u odnosu na do sada najveći proizvod transimpedanse i frekventnog opsega optičkih prijemnika sa promjenljivom transimpedansom,
- Šum je istog reda veličine kao i kod optičkih prijemnika sa promjenljivom transimpedansom na bazi strujnih pojačavača.

Originalni naučni doprinos ove doktorske disertacije sastoji se u:

- Prvoj primjeni translinearne petlje sa bipolarnim tranzistorima u optičkim prijemnicima sa promjenljivim pojačanjem koji zahtijevaju samo jedan napon napajanja,
- Povećanju dinamičkog opsega transimpedansi (foto-osjetljivosti) 4.1 puta u odnosu na do sada najveći dinamički opseg transimpedansi (foto-osjetljivosti) optičkih prijemnika sa promjenljivom transimpedansom,
- Povećanju transimpedanse (foto-osjetljivosti) 2.7 puta u odnosu na do sada najveću transimpedansu (foto-osjetljivost) optičkih prijemnika sa promjenljivom transimpedansom,
- Smanjenju naponskog ofseta najmanje 5 puta u odnosu na naponski ofset optičkih prijemnika sa promjenljivom transimpedansom na bazi strujnih pojačavača,
- Smanjenju maksimalne disipacije snage najmanje 2 puta u odnosu na disipaciju snage optičkih prijemnika sa promjenljivom transimpedansom na bazi strujnih pojačavača,
- Povećanju proizvoda transimpedanse i frekventnog opsega 2.3 puta u odnosu na do sada najveći proizvod transimpedanse i frekventnog opsega optičkih prijemnika sa promjenljivom transimpedansom.

U okviru doktorske disertacije izvršena je i analiza stabilnosti optičkog prijemnika sa promjenljivom transimpedansom u dvije različite tehnologije. Simulacije i eksperimentalni rezultati pokazuju da dizajn u 0.6 µm BiCMOS Si tehnologiji ima mnogo bolju stabilnost nego isti dizajn u 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji. Pokazano je da jeftinija 0.6 µm BiCMOS silicijumska tehnologija daje 17.5 puta veći dinamički opseg transimpedansi koji odgovara stabilnom radu optičkog prijemnika nego mnogo skuplja 0.35 µm BiCMOS silicijum-germanijumska tehnologija. S obzirom da je širok dinamički opseg transimpedansi veoma značajna karakteristika optičkih prijemnika koji se koriste za univerzalne optičke memorije, ovaj, na prvi pogled neočekivan zaključak, znači da je moguća proizvodnja visoko kvalitetnih optičkih sistema za skladištenje podataka upotrebom standardne silicijumske tehnologije.

Uzimajući u obzir prethodno navedene originalne naučne doprinose i činjenicu da su preostale performanse bitne za rad optičkih prijemnika sa promjenljivom transimpedansom (linearnost strujno-naponskih karakteristika, maksimalni frekventni opseg i šum) na nivou postojećih rješenja, zaključuje se da optički prijemnik sa promjenljivom transimpedansom koji je predmet ove doktorske disertacije predstavlja do sada najbolji dizajn optičkog prijemnika namijenjenog univerzalnim optičkim memorijama (CD, DVD, Blu-Ray).

DODATAK A Električne šeme i fizički layout-i čipova

Na slikama A.1-A.3 su prikazane električne šeme iz CADANCE-a za čipove tia105a, tia107 i WG_A2, dok su na slikama A.4-A.6 prikazani njihovi fizički *layout-*i.

Slika A.1 Električna šema iz CADENCE-a čipa tia 105a.

Slika A.4 Fizički layout čipa tia105a.

Slika A.5 Fizički layout čipa tia 107.

Slika A.6 Fizički layout čipa WG_A2.

DODATAK B Dimenzije MOSFET-ova i BJT-ova

U tabeli B.1 su date dimenzije MOSFET-ova optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima. Površina emitorskog spoja bipolarnih tranzistora je $A_E=0.6 \ \mu m^2$.

MOSFET	širina kanala MOSFET-a <i>W</i> [µm]	dužina kanala MOSFET-a L[µm]
Mı	30	0.6
M ₂	30	0.6
M3	30	0.6
M.4	30	0.6
M ₅	30	0.6
M ₆	30	0.6
M7	18	0.6
M ₈	18	0.6
M9	18	0.6
M ₁₀	18	0.6
M ₁₁	18	0.6
M ₁₂	18	0.6
M ₁₃	18	0.6
MII	18	0.6
M ₁₅	18	0.6
M ₁₆	18	0.6
M ₁₇	18	0.6
M ₁₈	18	0.6
M ₁₉	12	0.6
M ₂₀	12	0.6
M ₂₁	12	0.6
M ₂₂	12	0.6
M ₂₃	12	0.6
M ₂₄	12	0.6
M ₂₅	12	0.6
M ₂₆	12	0.6
M ₂₇	12	1.2
M ₂₈	12	0.6
M ₂₉	12	0.6
M ₃₀	12	0.6
M ₃₁	12	0.6
M ₃₂	12	1.2
M ₃₃	12	1.2

Tabela B.1 Dimenzije MOSFET-ova optičkog prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima.

DODATAK C Štampana ploča

Na slikama C.1 i C.2 je prikazana štampana ploča za čipove tia105a, tia107 i WG_A2.

Slika C.1 Šema štampane ploče za čipove tia105a, tia107 i WG_A2.

Slika C.2 Štampana ploča za čipove tia105a, tia107 i WG_A2: a) "full", b) "top", c) "bot", d) "top+silk", e) "top+silk+docu", f) "top+silk+solderstop".

DODATAK D Fotografije štampane ploče i mikrofotografije čipova

Na slici D.1 su prikazane fotografije štampane ploče za koju je zalijepljen čip tia 105a, dok su na slikama D.2-D.4 prikazane mikrofotografije čipova tia 105a, tia 107 i WG_A2, respektivno.

Slika D.1 Fotografije štampane ploče za koju je zalijepljen čip tia 105a.

Slika D.2 Mikrofotografije čipa tia 105a.

Slika D.3 Mikrofotografije čipa tia 107.

Slika D.4 Mikrofotografije čipa WG_A2.

DODATAK E Fotografije iz laboratorije

Na slici E.1 su prikazane fotografije iz laboratorije, Institute of Electrodynamics, Microwave and Circuit Engineering, Faculty of Electrical Engineering and Information Technology, Vienna University of Technology.

Slika E.1 Fotografije iz laboratorije.

DODATAK F MATLAB kodovi

Priloženi su MATLAB kodovi koji su korišćeni prilikom uporedne analize optičkih prijemnika na bazi translinearne petlje sa bipolarnim tranzistorima u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijum-germanijumskoj tehnologiji, poglavlje 5.

F.1 Zavisnost prirodne učestanosti $\omega_{\mu\nu CCA}$ od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Cpd = 200;
Vt = 0.025;
Va = 25;
Icvc = 25;
Ic1 = 50;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dlpd:lpdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cb10 = 20;
for i=1:1:n+1
   Ic2(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
   w0l1(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(1)));
end
Cb10 = 40;
for 1=1:1:n+1
   w012(i) = 1/2/Vt*sqrt(Ic1*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Cb10 = 60;
for i=1:1:n+1
   w013(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
plot(le-6*Ic2,le9*w011,'r',le-6*Ic2,le9*w012,'g',le-6*Ic2,le9*w013,'b')
```

F.2 Zavisnost prirodne učestanosti ω_{0VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
V_t = 0.025;
V_{a} = 90;
Icvc = 25;
Ic1 = 50;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cb10 = 10;
for i=1:1:n+1
   Ic2(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
   w011(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Icl+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Cb10 = 30;
for i=1:1:n+1
   w012(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Icl+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Cb10 = 50;
for i=1:1:n+1
   Ic23(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
   w013(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Icl+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Cb10 = 120;
for i=1:1:n+1
   w014(i) = 1/2/Vt*sqrt(Ic1*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
plot(Ic2,w011,'r',Ic2,w012,'g',Ic2,w013,'b',Ic2,w014,'k')
```

F.3 Zavisnost faktora Q_{PCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Cpd = 200;
Vt = 0.025;
Va = 25;
Icvc = 25;
Ic1 = 50;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
\begin{array}{l} \text{Cc4min} = 5;\\ \text{Cc4max} = 60; \end{array}
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b_{5min} = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cb10 = 20;
for 1=1:1:n+1
    Ic2(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    A1(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10);;
    B1(i) = Icl^{+}Ipd(i)^{+}Cb10+Ic2(i)^{+}(Icl^{+}(Vt/Va^{+}Cpd+Cc4(i)/4/b4)+Ipd(i)^{+}(Cpd/b5(i)+Cc4(i)));
    Q11(i) = 0.5 \cdot A1(i) / B1(i);
end
Cb10 = 40;
for i=1:1:n+1
    A2(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4 * (Icl * (Vt /Va * Cpd + Cc4(i) / 4 / b4) + Ipd(i) * (Cpd / b5(i) + Cc4(i))) * Cb10));
    B2(i) = Ic1^{+}Ipd(i)^{+}Cb10^{+}Ic2(i)^{+}(Ic1^{+}(Vt/Va^{+}Cpd^{+}Cc4(i)/4/b4)^{+}Ipd(i)^{+}(Cpd/b5(i)^{+}Cc4(i)));
    Q12(i) = 0.5 * A2(i) / B2(i);
end
Cb10 = 60;
for i=1:1:n+1
    A3(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
         4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q13(i) = 0.5*A3(i)/B3(i);
end
plot (Ic2,Q11, 'r', Ic2,Q12, 'g', Ic2,Q13, 'b')
```

F.4 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa ekvivalentnom kapacitivnošću C_{B10} kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
V_{a} = 90;
I_{CVC} = 25:
Ic1 = 50;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-lpdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cb10 = 10;
for i=1:1:n+1
    Ic2(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    Al(i) = sqrt(Ic1*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B1(i) = Ic1*Ipd(i)*Cb10+Ic2(i)*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)*Cc4(i)));
    Qll(i) = 0.5 + Al(i) / Bl(i);
end
Cb10 = 30;
for i=1:1:n+1
    A2(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4* (Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cbl0));
    B2(i) = Icl*Ipd(i)*(Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5*A2(i)/B2(i);
end
Cb10 = 50;
for i=1:1:n+1
   A3(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl^{+}Ipd(i)^{+}Cbl0+Ic2(i)^{+}(Icl^{+}(Vt/Va^{+}Cpd+Cc4(i)/4/b4)+Ipd(i)^{+}(Cpd/b5(i)+Cc4(i)));
   Q13(i) = 0.5 \cdot A3(i) / B3(i);
end
Cb10 = 120;
for i=1:1:n+1
   A4(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
   B4(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
   Q14(i) = 0.5 * A4(i) / B4(i);
end
plot(Ic2,Q11, 'r', Ic2,Q12, 'g', Ic2,Q13, 'b', Ic2,Q14, 'k')
```

F.5 Zavisnost prirodne učestanosti ω_{bVCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Vt = 0.025;
Va = 25;
Cb10 = 40;
Icvc = 25;
Ic1 = 50;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cpd = 150;
for i=l:l:n+l
   Ic2(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
   w011(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Cpd = 200;
for i=1:1:n+1
   w012(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Cpd = 250;
for i=1:1:n+1
   w013(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
```

```
plot(Ic2,w011,'r',Ic2,w012,'g',Ic2,w013,'b')
```

F.6 Zavisnost prirodne učestanosti ω_{DVCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Vt = 0.025;
Va = 90;
Cb10 = 30;
Icvc = 25;
Ic1 = 50;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cpd = 200;
for i=1:1:n+1
   Ic2(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    w011(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Cpd = 250;
for i=1:1:n+1
   w012(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Cpd = 300;
for i=1:1:n+1
   w013(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
plot(Ic2,w011,'r',Ic2,w012,'g',Ic2,w013,'b')
```

F.7 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Vt = 0.025;
Va = 25;
Cb10 = 40;
Icvc = 25;
Ic1 = 50;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cpd = 150;
for i=1:1:n+1
    Ic2(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^{(1/4)});
    Al(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+..
        4* (Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    Bl(i) = Icl*Ipd(i)*Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q11(i) = 0.5*A1(i)/B1(i);
end
Cpd = 200;
for i=1:1:n+1
    A2(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...)
        4*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B2(i) = Icl*Ipd(i)*Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5*A2(i)/B2(i);
end
Cpd = 250;
for i=1:1:n+1
    A3(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4* (Ic1* (Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl*Ipd(i)*Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q13(i) = 0.5*A3(i)/B3(i);
end
plot(Ic2,Q11, 'r', Ic2,Q12, 'q', Ic2,Q13, 'b')
```

F.8 Zavisnost faktora Q_{PCCA} od kontrolne struje I_{C2} , sa kapacitivnošću fotodiode C_{PD} kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Vt = 0.025;
 Va = 90;
 Cb10 = 30;
 Icvc = 25;
 Ic1 = 50;
 b6 = 170;
 b4 = 170;
 Ipdmin = 0.04;
 Ipdmax = 300;
 n = 8000;
 dIpd = (Ipdmax-Ipdmin)/n;
 Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Cpd = 200;
for i=1:1:n+1
    Ic2(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    Al(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    Bl(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q11(i) = 0.5*A1(i)/B1(i);
end
Cpd = 250;
for i=1:1:n+1
   A2(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cbi0));
    B2(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5 * A2(i) / B2(i);
end
Cpd = 300;
for i=1:1:n+1
   A3(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10);
   B3(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q13(i) = 0.5 * A3(i) / B3(i);
end
```

```
plot(Ic2,Q11,'r',Ic2,Q12,'g',Ic2,Q13,'b')
```

F.9 Zavisnost prirodne učestanosti ω_{oVCCA} od kontrolne struje I_{C2} , sa *Early*-jevim naponom V_A kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Cpd = 200;
Vt = 0.025;
Cb10 = 40;
Icvc = 25;
Ic1 = 50;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dlpd:lpdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Va = 15:
for i=1:1:n+1
   Ic2(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
   w011(i) = 1/2/Vt*sqrt(Ic1*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Va = 25;
for i=1:1:n+1
   w012(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
       4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Va = 35;
for i=1:1:n+1
   w013(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpa+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
plot(Ic2,w011,'r',Ic2,w012,'g',Ic2,w013,'b')
```


F.10 Zavisnost prirodne učestanosti ω_{VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
Cb10 = 30;
Icvc = 25;
Ic1 = 50;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Va = 60;
for i=1:1:n+1
    Ic2(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    w011(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4+Cb10+((Vt/Va*Cpd+Cc4(i)/4/b4)+Icl+(Cpd/b5(i)+Cc4(i))+Ipd(i))));
end
Va = 90;
for i=1:1:n+1
    w012(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Va = 120;
for i=1:1:n+1
    w013(i) = 1/2/Vt*sqrt(Icl*Ic2(i)*Ipd(i)/(Ic2(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
plot(Ic2,w011,'1',Ic2,w012,'g',Ic2,w013,'b')
```

F.11 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom, 0.6 μ m BiCMOS silicijumska tehnologija

```
Cpd = 200;
Vt = 0.025;
Cb10 = 40;
Icvc = 25;
Ic1 = 50;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dlpd = (lpdmax-lpdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (bSmax-b5min)/n;
b5 = b5min:db5:b5max;
Va = 15;
for i=1:1:n+1
    Ic2(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    Al(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+..
        4* (Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B1(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q1(i) = 0.5*A1(i)/B1(i);
end
Va = 25;
for i=1:1:n+1
    A2(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B2(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q2(i) = 0.5 * A2(i) / B2(i);
end
Va = 35;
for i=1:1:n+1
    A3(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cbl0));
    B3(i) = Icl*Ipd(i)*Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q3(i) = 0.5 \cdot A3(i) / B3(i);
end
plot(Ic2,Q1,'r',Ic2,Q2,'g',Ic2,Q3,'b')
```

F.12 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa Early-jevim naponom V_A kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
Cb10 = 30;
Icvc = 25;
Ic1 = 50;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Va = 60;
for i=1:1:n+1
    Ic2(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i))*Icvc/Ipd(i))^{(1/4)};
    Al(i) = sqrt(Ic1*Ic2(i)*Ipd(1)*(Ic2(i)*Cpd*Cc4(i)+...
        4* (Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    Bl(i) = Icl*Ipd(i)*Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i));
    O11(i) = 0.5*A1(i)/B1(i);
end
Va = 90;
for i=1:1:n+1
    A2(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B2(i) = Icl*Ipd(i)*Cbl0+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5*A2(i)/B2(i);
end
Va = 120;
for i=1:1:n+1
    A3(i) = sqrt(Icl*Ic2(i)*Ipd(i)*(Ic2(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl*Ipd(i)*Cb10+Ic2(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q13(i) = 0.5*A3(i)/B3(i);
end
plot(Ic2,Q11,'r',Ic2,Q12,'g',Ic2,Q13,'b')
```

F.13 Zavisnost prirodne učestanosti $\omega_{\mu\nu CCA}$ od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Cpd = 200;
Vt = 0.025;
Va = 25;
Cb10 = 40;
ICVC = 25;
Ic1 = 50;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b6 = 60;
b4 = 60;
b5min = 20;
b5max = 60;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^{(1/4)});
    w011(i) = 1/2/Vt*sqrt(Icl*Ic21(i)*Ipd(i)/(Ic21(i)*Cc4(i)*Cpd+..
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
b6 = 90;
b4 = 90;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=l:1:n+1
    Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    w012(i) = 1/2/Vt*sqrt(Icl*Ic22(i)*Ipd(i)/(Ic22(i)*Cc4(i)*Cpd+..
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
b6 = 120;
b4 = 120;
b5min = 40;
b5max = 120;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic23(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    w013(i) = 1/2/Vt*sqrt(Icl*Ic23(i)*Ipd(i)/(Ic23(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
```

plot(Ic21,w011,'r',Ic22,w012,'g',Ic23,w013,'b')

F.14 Zavisnost prirodne učestanosti ω_{bVCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
Va = 90;
Cb10 = 30;
Icvc = 25;
Ic1 = 50;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b6 = 130;
b4 = 130;
b5min = 45;
b5max = 130;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    w011(i) = 1/2/Vt*sqrt(Icl*Ic21(i)*Ipd(i)/(Ic21(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(1)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
b6 = 170;
b4 = 170;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5+((1+b5(i))/b5(i)+Icvc/Ipd(i))^{(1/4)});
    w012(i) = 1/2/Vt*sqrt(Icl*Ic22(i)*Ipd(i)/(Ic22(i)*Cc4(i)*Cpd+..
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
b6 = 210;
b4 = 210;
b5min = 70;
b5max = 210;
db5 \approx (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic23(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    w013(i) = 1/2/Vt*sqrt(Icl*Ic23(i)*Ipd(i)/(Ic23(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
plot(Ic21,w011,'r',Ic22,w012,'q',Ic23,w013,'b')
```

Cpd = 200;Vt = 0.025;Va = 25;Cb10 = 40;Icvc = 25;Ic1 = 50;Ipdmin = 0.04; Ipdmax = 300; n = 8000;dIpd = (Ipdmax-Ipdmin)/n; Ipd = lpdmin:dIpd:Ipdmax; Cc4min = 5; Cc4max = 60;dCc4 = (Cc4max-Cc4min)/n; Cc4 = Cc4min:dCc4:Cc4max; b6 = 60;b4 = 60;b5min = 20:b5max = 60; db5 = (b5max-b5min)/n; b5 = b5min:db5:b5max; for i=1:1:n+1 Ic21(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));Al(i) = sqrt(Icl*Ic21(i)*Ipd(i)*(Ic21(i)*Cpd*Cc4(i)+... 4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10)); B1(i) = Icl*Ipd(i)*Cb10+Ic21(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i))); Q1(i) = 0.5 + A1(i) / B1(i);end b6 = 90; b4 = 90;b5min = 30;b5max = 90;db5 = (b5max-b5min)/n;b5 = b5min:db5:b5max; for i=1:1:n+1 Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));A2(i) = sqrt(Icl*Ic22(i)*Ipd(i)*(Ic22(i)*Cpd*Cc4(i)+... 4*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10)); B2(i) = Icl+Ipd(i) *Cbl0+Ic22(i) *(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i) *(Cpd/b5(i)+Cc4(i))); $Q2(i) = 0.5 \cdot A2(i) / B2(i);$ end b6 = 120;b4 = 120;b5min = 40;b5max = 120; db5 = (b5max - b5min)/n;b5 = b5min:db5:b5max; for i=1:1:n+1 Ic23(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4)); A3(i) = sqrt(Icl*Ic23(i)*Ipd(i)*(Ic23(i)*Cpd*Cc4(i)+.. 4*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10)); B3(i) = Icl*Ipd(i)*Cbl0+Ic23(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)); Q3(i) = 0.5 + A3(i) / B3(i);end plot(Ic21,Q1,'r',Ic22,Q2,'g',Ic23,Q3,'b')

F.15 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom, 0.6 μ m BiCMOS silicijumska tchnologija

F.16 Zavisnost faktora Q_{VCCA} od kontrolne struje I_{C2} , sa strujnim pojačanjem β kao parametrom, 0.35 μ m BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
Va = 90;
Cb10 = 30;
Icvc = 25;
Ic1 = 50;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5:
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b6 = 130;
b4 = 130;
b5min = 45;
b5max = 130;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
Al(i) = sqrt(Ic1*Ic21(i)*Ipd(i)*(Ic21(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B1(i) = Icl*Ipd(i)*Cb10+Ic21(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q11(i) = 0.5 \cdot A1(i) / B1(i);
end
b6 = 170;
b4 = 170;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    A2(i) = sqrt(Icl*Ic22(i)*Ipd(i)*(Ic22(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B2(i) = Icl*Ipd(i)*Cb10+Ic22(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5 \cdot A2(i) / B2(i);
end
b6 = 210;
b4 = 210;
b5min = 70;
b5max = 210;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
for i=1:1:n+1
    Ic23(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    A3(i) = sqrt(Icl*Ic23(i)*Ipd(i)*(Ic23(i)*Cpd*Cc4(i)+...
        4*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl*Ipd(i)*Cb10+Ic23(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q13(i) = 0.5 * A3(i) / B3(i);
end
plot(Ic21,Q11, 'r', Ic22,Q12, 'g', Ic23,Q13, 'b')
```

F.17 Zavisnost prirodne učestanosti ω_{nVCCA} od odnosa kontrolnih struja I_{Cl}/I_{Cl} , sa kontrolnom strujom I_{Cl} kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Cpd = 200;
Vt = 0.025;
Va = 25;
Cb10 = 40;
Icvc = 25;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Ic1 = 50;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^{(1/4)});
    w011(i) = 1/2/Vt*sqrt(Icl*Ic21(i)*Ipd(i)/(Ic21(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Icl = 100;
for i=1:1:n+1
    Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^{(1/4)});
    w012(i) = 1/2/Vt*sqrt(Ic1*Ic22(i)*Ipd(i)/(Ic22(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
Ic1 = 150;
for i=1:1:n+1
    Ic23(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^{(1/4)});
    w013(i) = 1/2/Vt*sqrt(Ic1*Ic23(i)*Ipd(i)/(Ic23(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
plot (50./Ic21,w011,'r',100./Ic22,w012,'g',150./Ic23,w013,'b')
```

F.18 Zavisnost prirodne učestanosti ω_{oVCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
Va = 90;
Cb10 = 30;
Icvc = 25;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Ic1 = 50;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5+((1+b5(i))/b5(i)+Icvc/Ipd(i))^{(1/4)});
    w011(i) = 1/2/Vt*sqrt(Ic1*Ic21(i)*Ipd(i)/(Ic21(i)*Cc4(i)*Cpd+...
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Ic1 = 100;
for i=1:1:n+1
    Ic22(1) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    w012(i) = 1/2/Vt*sqrt(Ic1*Ic22(i)*Ipd(i)/(Ic22(i)*Cc4(i)*Cpd+.
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i)));
end
Ic1 = 150;
for i=1:1:n+1
    Ic23(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^{(1/4)});
    w013(i) = 1/2/Vt*sqrt(Ic1*Ic23(i)*Ipd(i)/(Ic23(i)*Cc4(i)*Cpd+.
        4*Cb10*((Vt/Va*Cpd+Cc4(i)/4/b4)*Ic1+(Cpd/b5(i)+Cc4(i))*Ipd(i))));
end
plot(50./Ic21,w011,'r',100./Ic22,w012,'g',150./Ic23,w013,'b')
```


F.19 Zavisnost faktora Q_{PCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom, 0.6 µm BiCMOS silicijumska tehnologija

```
Cpd = 200;
 Vt = 0.025;
 Va = 25;
 Cb10 = 40;
 Icvc = 25;
b6 = 90;
b4 = 90;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000; bro tacala
dIpd = (Ipdmax-Ipdmin)/n;
Ipd = Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 60;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 30;
b5max = 90;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Ic1 = 50;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    A1(i) = sqrt(Icl*Ic21(i)*Ipd(i)*(Ic21(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    Bl(i) = Icl*Ipd(i)*Cb10+Ic21(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q11(i) = 0.5 \cdot A1(i) / B1(i);
end
Ic1 = 100;
for i=1:1:n+1
    Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    A2(i) = sqrt(Icl*Ic22(i)*Ipd(i)*(Ic22(i)*Cpd*Cc4(i)+...
        4*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B2(i) = Icl*Ipd(i)*Cb10+Ic22(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5 * A2(i) / B2(i);
end
Ic1 = 150;
for i=1:1:n+1
    Ic23(i) = (Icl-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    A3(i) = sqrt(Icl*Ic23(i)*Ipd(i)*(Ic23(i)*Cpd*Cc4(i)+...
        4*(Ic1*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl*Ipd(i)*Cb10+Ic23(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
   Q13(i) = 0.5*A3(i)/B3(i);
end
plot(50./Ic21,Q11,'r',100./Ic22,Q12,'g',150./Ic23,Q13,'b')
```
F.20 Zavisnost faktora Q_{VCCA} od odnosa kontrolnih struja I_{CI}/I_{C2} , sa kontrolnom strujom I_{CI} kao parametrom, 0.35 µm BiCMOS silicijum-germanijumska tehnologija

```
Cpd = 250;
Vt = 0.025;
Va = 90;
Cb10 = 30;
Icvc = 25;
b6 = 170;
b4 = 170;
Ipdmin = 0.04;
Ipdmax = 300;
n = 8000;
dIpd = (Ipdmax-Ipdmin)/n;
Ipd 📄 Ipdmin:dIpd:Ipdmax;
Cc4min = 5;
Cc4max = 30;
dCc4 = (Cc4max-Cc4min)/n;
Cc4 = Cc4min:dCc4:Cc4max;
b5min = 55;
b5max = 170;
db5 = (b5max-b5min)/n;
b5 = b5min:db5:b5max;
Ic1 = 50;
for i=1:1:n+1
    Ic21(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    Al(i) = sqrt(Icl*Ic21(i)*Ipd(i)*(Ic21(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cbl0));
    B1(i) = Icl*Ipd(i)*Cb10+Ic21(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    O11(i) = 0.5 \cdot A1(i) / B1(i);
end
Ic1 = 100;
for i=1:1:n+1
    Ic22(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))*(1/4));
    A2(i) = sqrt(Ic1*Ic22(i)*Ipd(1)*(Ic22(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B2(i) = Icl*Ipd(i)*Cb10+Ic22(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q12(i) = 0.5 \cdot A2(i) / B2(i);
end
Ic1 = 150;
for i=1:1:n+1
    Ic23(i) = (Ic1-Ipd(i)/(1+b5(i)))/(1/b6+0.5*((1+b5(i))/b5(i)*Icvc/Ipd(i))^(1/4));
    A3(i) = sqrt(Ic1*Ic23(i)*Ipd(i)*(Ic23(i)*Cpd*Cc4(i)+...
        4*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)))*Cb10));
    B3(i) = Icl*Ipd(i)*Cb10+Ic23(i)*(Icl*(Vt/Va*Cpd+Cc4(i)/4/b4)+Ipd(i)*(Cpd/b5(i)+Cc4(i)));
    Q13(i) = 0.5 * A3(i) / B3(i);
end
```

plot(50./Ic21.Q11,'r',100./Ic22,Q12,'g',150./Ic23,Q13,'b')

Literatura

- [1] K. J. Ebeling, Integrated Optoelectronics, Germany: Springer, 1993.
- [2] E. Sackinger, Broadband Circuits for Optical Fiber Communications, New Jersey: John Wiley & Sons, 2005.
- [3] H. Zimmermann, Silicon Optoelectronic Integrated Circuits, Germany: Springer, 2004.
- [4] R. G. Meyer and W. D. Mack, "A wideband low-noise variable-gain BiCMOS transimpedance amplifier", *IEEE Journal of Solid-State Circuits*, vol. 29, pp. 701-706, June 1994.
- [5] R. G. Meyer and W. D. Mack, "Monolithic AGC loop for a 160Mb/s transimpedance amplifier", *IEEE Journal of Solid-State Circuits*, vol. 31, pp. 1331-1335, Sept. 1996.
- [6] K. Phang and D. A. Johns, "A CMOS optical preamplifier for wireless infrared communications", *IEEE Transactions on Circuits and Systems, Part II: Analog and Digital Signal Processing*, vol. 46, pp. 852-859, July 1999.
- [7] K. Kieschnick and H. Zimmermann, "High-sensitivity BiCMOS OEIC for optical storage systems", *IEEE Journal of Solid-State Circuits*, vol. 38, pp. 579-584, April 2003.
- [8] H. Zimmermann and K. Kieschnick, "Low-offset BiCMOS OEIC for optical storage systems", *Electronics Letters*, vol. 36, no. 14, pp. 1223-1224, July 2000.
- [9] H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, "BiCMOS OEIC for optical storage systems", *Electronics Letters*, vol. 34, no. 19, pp. 1875-1876, 1998.
- [10] H. Zimmermann, K. Kieschnick, M. Heise, H. Pless, "High-Bandwidth BiCMOS OEIC for Optical Storage Systems", *IEEE International Solid-State Circuits Conference*, Digest of Technical Papers, Vol. 42, pp. 384–385, 1999.
- [11] K. Kieschnick, T. Heide, A. Ghazi, H. Zimmermann, and P. Seegebrecht, "High-speed photonic CMOS and BiCMOS receiver ICs", in Proc. 25th European Solid-State Circuit Conference (ESSCIRC), pp. 398-401, 1999.
- [12] T. Ruotsalainen, P. Palojarvi, and J. Kostamovaara, "A current-mode gain-control scheme with constant bandwidth and propagation delay for a transimpedance preamplifier", *IEEE Journal of Solid-State Circuits*, vol. 34, pp. 253-258, Feb. 1999.
- [13] J. Nissinen, P. Palojarvi, and J. Kostamovaara, "A CMOS receiver for a pulsed time-of-flight laser range finder", in *Proceedings of 29th European Solid-State Circuits Conference (ESSCIRC)*, pp. 325-328, 2003.
- [14] G. W. de Jong, J. R. M. Bergevoet, J. H. A. Brekelmans, and J. F. P. van Mil, "A DC-to-250 MHz current pre-amplifier with integrated photo-diodes in standard CBiMOS, for optical storage systems", *International Solid-State Circuits Conference ISSCC 2002*, *Digest of Technical papers*, vol. 1, pp. 362-474, 3rd-7th February 2002.
- [15] J. Sturm, M. Leifhelm, H, Schatzmayr, S. Groiss, and H. Zimmermann, "Optical receiver IC for CD/DVD/blue-laser application", *IEEE Journal of Solid-State Circuits*, vol. 40, pp. 1406-1413, July 2005.
- [16] C. Seidl, H. Schatzmayr, J. Sturm, S. Groiss, M. Leifhelm, D. Spitzer, H. Schaunig, and H. Zimmerman, "A programmable OEIC for laser applications in the range from 405 nm to

780 nm", *Proceedings of European Solid-State Circuits Conference (ESSCIRC)*, pp. 439-442, 12 - 16 September 2005, Grenoble, France.

- [17] N. Tadić and H. Zimmermann, "Low-power BiCMOS optical receiver with voltagecontrolled transimpedance", *IEEE Journal of Solid-State Circuits*, vol. 42, pp. 613-626, March 2007.
- [18] N. Tadić and H. Zimmermann, "Highly linear BiCMOS optical receiver with voltagecontrolled sensitivity", *Electronics Letters*, vol. 42, no. 2, pp. 116-117, 19th January 2006.
- [19] N. Tadić and H. Zimmermann, "Optical receiver with voltage-controlled transimpedance in BiCMOS technology", in Proc. IEEE International Conference on Microelectronics MIEL2006, Belgrade, Serbia and Montenegro, pp. 421-424, 14-17 May, 2006.
- [20] N. Tadić and H. Zimmermann, "Optical receiver with widely tunable sensitivity in BiCMOS technology", *IEEE Transactions on Circuits and Systems, part I: Regular papers*, vol. 55, pp. 1223-1236, June 2008.
- [21] N. Tadić, A. Marchlewski, and H. Zimmermann, "BiCMOS optical receiver with 54.7 dB voltage-controlled sensitivity range", *Electronics Letters*, vol. 44, no. 6, pp. 440-441, 13th March 2008.
- [22] N. Tadić, A. Marchlewski, and H. Zimmermann, "A 122 TΩHz transimpedance bandwidth product BiCMOS optical sensor frontend with a 54.7 dB voltage-controlled photosensitivity range", Analog Integrated Circuits and Signal Processing, vol. 61, no. 1, pp. 19-33, October 2009.
- [23] N. Tadić, A. Marchlewski, and H. Zimmermann, "Optical receiver with voltage-controlled transimpedance in BiCMOS technology with a gain bandwidth product of 126 TΩHz", in *Proceedings of IEEE International Conference on Microelectronics MIEL2008*, Niš, Serbia, pp. 399-402, 11-14 May 2008.
- [24] J. H. Huijsing, Operational Amplifiers Theory and Design, Boston: Kluwer Academic Publishers, 2001.
- [25] K-J. de Langen and J. H. Huijsing, Compact Low-Voltage and High-Speed CMOS, BiCMOS and Bipolar Operational Amplifiers, 2nd edition, Boston: Kluwer Academic Publishers, 2003.
- [26] R. C. Jaeger and T. N. Blalock, *Microelectronic Circuit Design*, 2nd edition, New York: McGraw-Hill, 2004.
- [27] A. S. Sedra and K. C. Smith, *Microelectronic Circuits*, 5th edition, New York: Oxford University Press, 2004.
- [28] D. A. Neamen, *Microelectronics Circuit Analysis and Design*, 3rd edition. Singapore: McGraw-Hill, 2007.
- [29] R. J. Baker, H. W. Li and D. E. Boyce, CMOS: Circuit Design, Layout, and Simulations, New York: IEEE Press, Wiley Interscience, 1998.
- [30] M. Stojić, Kontinualni sistemi automatskog upravljanja, Beograd: Naučna knjiga, 1985.
- [31] K. C. Smith and A. S. Sedra, "The current conveyor a new circuit building block", *Proceedings of IEEE*, vol. 56, pp. 1368–1369, Aug. 1968.
- [32] A. S. Sedra, G. W. Roberts, and F. Gohh, "The current conveyer: history, progress and new results", *IEE Proceedings*, *Part G (Circuits, Devices and Systems)*, vol. 137, pp. 78–87, Apr. 1990.

- [33] B. Wilson, "Performance analysis of current conveyors", *Electronics Letters*, vol. 25, pp. 1596-1598, Nov. 1989.
- [34] A. Fabre, O. Saaid, and H. Barthelemy, "On the frequency limitations of the circuits based on second generation current conveyors", *Analog Integrated Circuits Signal Processing*, vol. 7, pp. 113–129, 1995.
- [35] P. R. Gray and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 3rd edition, New York: John Wiley & Sons, 1993.
- [36] C. Toumazou, F. J. Lidgey, and D. G. Haigh, Analogue IC design: the current-mode approach, Stevenage, U. K.: Peter Peregrinus, 1990.
- [37] B. Wilson, "Performance analysis of current conveyors", *Electronics Letters*, vol. 25, pp. 1596-1598, November, 1989.
- [38] A. S. Sedra, G. W. Roberts, and F. Gohh, "The current conveyer: history, progress and new results", *IEE Proceedings*, part G (Circuits, Devices and Systems), vol. 137, pp. 78-87, April 1990.
- [39] N. Tadić, W. Gaberl, M. Zogović and H. Zimmermann, "A BJT translinear loop based optoelectronic integrated circuit with variable transimpedance for optical storage systems", *Analog Integrated Circuits and Signal Processing*, vol. 66, no. 2, pp. 293-298, Feb. 2011.
- [40] N. Tadić, M. Zogović, W. Gaberl and H. Zimmermann, "A 78.4 dB Photo-Sensitivity Dynamic Range, 285 TΩHz Transimpedance Bandwidth Product BiCMOS Optical Sensor for Optical Storage Systems", *IEEE Journal of Solid-State Circuits*, vol. 46, no. 5, pp. 1170-1182, May 2011.
- [41] N. Tadić, M. Zogović, W. Gaberl and H. Zimmermann, "On frequency response and stability of an optical front-end with variable-gain current amplifier using a BJT translinear loop", *International Journal of Circuit Theory and Applications*, in press.
- [42] M. Förtsch, H. Zimmermann, and H. Pless, "220-MHz monolithically integrated optical sensor with large-area integrated PIN photodiode", *IEEE Sensors Journal*, vol. 6, pp. 385-390, April 2006.
- [43] M. Förtsch, H. Dietrich, and H. Zimmermann, "Complete low-cost 625 Mbit/s optical fiber receiver in 0.6 μm BiCMOS technology", *Proceedings of SPIE*, vol. 5952, Optics and Optoelectronics, Optical Fibers II: Applications, Eds.: L. R. Jaroszewicz, B. Culshaw, A. G. Mignani, 2005, pp. R-1 – R-6.
- [44] H. Hein, M. Förtsch, and H. Zimmermann, "Low-power 300 Mbit/s OEIC with large-area photodiode", *Electronics Letters*, vol. 41, no. 7, 31st March 2005, pp. 436-438.
- [45] M. Förtsch, H. Zimmermann, and H. Pless, "220 MHz optical receiver with large-area integrated PIN photodiode", *Proceedings of IEEE Sensors Conference*, volume 2, pp. 1012-1015, 22nd - 24th October 2003.
- [46] M. Förtsch, H. Zimmermann, W. Einbrodt, K, Bach, and H. Pless, "Integrated PIN photodiode in high-performance BiCMOS technology", *IEEE International Electron Devices Meeting*, Tech. Digest, pp. 801-804, 2002.
- [47] H. Zimmermann, A. Marchlewski, W. Gaberl, I. Jonak-Auer, G. Meinhardt and E. Wachmann, "Blue Enhanced PIN Finger Photodiodes in 0.35-µm SiGe BiCMOS Technology", *IEEE Photonic Technology Letters*, vol. 21, no. 22, pp. 1656-1658, 15 November 2009.

- [48] L. D. Garret, J. Qi, C. L. Schow and J. C. Cambpell, "A silicon-based integrated NMOS-p-i-n photoreceiver", *IEEE Transaction on Electron Devices*, vol. 43, no. 3, pp. 411-416, 1996.
- [49] S. He, L. D. Garret, K.-H. Lee and J. C. Cambpell, "Monolithic integrated silicon NMOS PIN photoreceiver", *Electronics Letters*, vol. 30, no. 22, pp. 1887-1888, 1994.
- [50] H. Zimmermann, "Monolithic Bipolar-, CMOS-, and BiCMOS- receiver OEICs", in Proceedings of Integrated Semiconductor Conference (CAS'96), Sinaia, Romania, pp. 31-40, 1996.
- [51] H. Zimmermann, T. Heide and A. Ghazi, "Monolithic high-speed CMOS-photoreceiver", *IEEE Photonics Technology Letters*, vol. 11, no. 2, pp. 254-256, 1999.
- [52] H. Zimmermann, U. Müller, R. Buchner and P. Seegebrecht, "Optoelectronic receiver circuits in CMOS-technology", in *Mikroelektronik* '97, *GMM Fachbericht* 17, VDE-Verlag, Berlin, Offenbach, pp. 195-201, 1997.
- [53] H. Zimmermann, A. Ghazi, T. Heide, R. Popp and R. Buchner, "Advanced photo integrated circuits in CMOS technology", in *Proceedings of 49th Electronic Components and Technology Conference (ECTC)*, pp. 1030-1035, 1999.
- [54] H. Zimmermann, T. Heide, A. Ghazi and P. Seegebrecht, "PIN-CMOS-receivers for optical interconnects", in *H. Grabinski, ed., Signal Propagation on Interconnects*, vol. II, Amsterdam: Kluwer, 1999.
- [55] A. Ghazi, T. Heide and H. Zimmermann, "PIN CMOS OEIC for DVD systems", in Proceedings of 43rd International Scientific Colloquium, TU Ilmena, Germany, vol. 2, pp. 380-385, 1998.
- [56] M. Kyomasu, "Development of an integrated high speed silicon PIN photodiode sensor", *IEEE Transactions on Electron Devices*, vol. 42, no. 6, pp. 1093-1099, 1995.
- [57] M. Yamamoto, M. Kubo and K. Nakao, "Si-OEIC with a built-in PIN-photodiode", *IEEE Transactions on Electron Devices*, vol. 42, no. 1, pp. 58-63, 1995.
- [58] Maoyou Sun, Kezhou Xie and Yicheng Lu, "Robust PIN photodiode with a guard ring protection structure", *IEEE Transactions on Electron Devices*, vol. 51, no. 6, pp. 833-838, 2004.
- [59] J. Colinge and C. A. Colinge, *Physics of Semiconductor Devices*, Massachusetts: Kluwer Academic Publishers, 2002.
- [60] B. Gilbert, "Translinear circuits: a proposed classification", *Electronics Letters*, vol. 11, no. 1, pp. 14-16, Jan. 1975.
- [61] N. Tadić, "A β-error elimination in the translinear reduction of the log-antilog multiplier/divider", in Proceedings of IEEE Instrumentation and Measurement Technology Conference (IMTC 1999), vol. 1, pp. 525-530, May 1999.
- [62] D. Johns and K. Martin, Analog Integrated Circuit Design, New York: John Wiley & Sons, 1997.
- [63] K. R. Laker and W. M. C. Sansen, *Design of Analog Integrated Circuits and Systems*, New York: McGraw Hill, 1994.
- [64] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw Hill, 2001.
- [65] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd edition, New York: McGraw-Hill, 1999.

- [66] J. N. Babanezhad and R. Gregorian, "A Programmable Gain/Loss Circuit", IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1082-1090, Dec. 1987.
- [67] N. S. Sooch, "MOS Cascode Current Mirror", U.S. patent no. 4,550,284, Oct. 1985.
- [68] D. Motchenbacher and J. A. Connelly, Low Noise Electronic System Design, New York: John Wiley & Sons, 1994.
- [69] Van der Ziel, Noise in Solid State Devices and Circuits, New York: John Wiley & Sons, 1986.
- [70] R. C. Jaeger and A. J. Broderson, "Low-Frequency Noise Sources in Bipolar Junction Transistor", *IEEE Transactions on Electron Devices*, vol. 17, pp. 128-134, Feb. 1970.
- [71] D. G. Peterson, "Noise Performance of Transistors", *IRE Transactions on Electron* Devices, vol. 9, pp. 296-303, May 1962.

PODACI POTREBNI ZA DIGITALIZACIJU DOKTORSKE DISERTACIJE

Ime i prezime autora: Milena Erceg

Godina rođenja: **1984.** E-mail: **zmilena@ucg.ac.me**

Organizaciona jedinica Univerziteta Crne Gore: Elektrotehnički fakultet

Naslov doktorske disertacije: **Optički prijemnik sa promjenljivom** transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petlje sa bipolarnim tranzistorima

Prevod naslova na engleski jezik: *Optical receiver with variable transimpedance based on BJT translinear loop in integrated BiCMOS technology*

Datum odbrane: 12.03.2012.

Signatura u Univerzitetskoj biblioteci¹

Naslov, sažeci, ključne riječi (priložiti dokument sa podacima potrebnim za unos doktorske disertacije u Digitalni arhiv Univerziteta Crne Gore)

Izjava o korišćenju (priložiti potpisanu izjavu)

Napomena

¹ Podatak o signaturi (lokaciji) može ispuniti biblioteka organizacione jedinice/Univerzitetska biblioteka

PODACI POTREBNI ZA UNOS DOKTORSKE DISERTACIJE U DIGITALNI ARHIV UNIVERZITETA CRNE GORE

Prevod naslova disertacije na engleski jezik

Optical receiver with variable transimpedance based on BJT translinear loop in integrated BiCMOS technology

Mentor i članovi komisija (za ocjenu i odbranu)

Komisija za ocjenu rada

Prof. dr Ivo Kostić Prof. dr Nikša Tadić, mentor Prof. dr Desa Gobović

Komisija za odbranu rada

Prof. dr Ivo Kostić Prof. dr Nikša Tadić, mentor Prof. dr Desa Gobović Prof. dr Zoran Mijanović Prof. dr Rada Dragović-Ivanović

Sažetak

U doktorskoj disertaciji predstavljen je optički prijemnik sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima u integrisanoj BiCMOS tehnologiji koji je namijenjen za univerzalne optičke memorije. Ovo optoelektronsko integrisano kolo pripada grupi optičkih prijemnika sa strujnim pojačavačima sa promjenljivim pojačanjem i sadrži integrisanu PIN fotodiodu. U okviru doktorske disertacije data je podjela optičkih prijemnika, kao i pregled postojećih rješenja optičkih prijemnika sa promjenljivom transimpedansom. Prikazan je dizajn optičkog prijemnika sa promjenljivom transimpedansom na bazi translinearne petlje sa bipolarnim tranzistorima i dati odgovarajući matematički modeli. Opisan je mehanizam kontrole pojačanja optičkog prijemnika. Izvršena je detaljna analiza frekventnih karakteristika optičkog prijemnika, analiza stabilnosti, kao i analiza šuma. ASIC čipovi koji sadrže optički prijemnik sa fabrikovani u 0.6 µm BiCMOS silicijumskoj tehnologiji i 0.35 µm BiCMOS silicijumgermanijumskoj tehnologiji. Dat je pregled eksperimentalno dobijenih rezultata i izvršena analiza svih bitnih statičkih (greška linearnosti izlaznog napona u funkciji od struje fotodiode, transimpedansa, foto-osjetljivost, naponski ofset, maksimalna disipacija snage) i dinamičkih (frekventni odziv, vremenski odziv, šum) karakteristika optičkog prijemnika, kao i poredenje sa odgovarajućim karakteristikama postojećih rješenja. Kroz sprovedenu uporednu analizu pokazano je da predloženo rješenje predstavlja najbolji dizajn do sada ostvaren u oblasti optičkih prijemnika sa promjenljivom transimpedansom koji su namijenjeni univerzalnim optičkim memorijama. Ovaj optički prijemnik posjeduje najveću transimpedansu, najveću foto-osjetljivost, najveći dinamički opseg transimpedansi (fotoosjetljivosti), kao i najveći proizvod transimpedansa-frekventni opseg koji su do sada postignuti u oblasti optičkih prijemnika sa promjenljivom transimpedansom namijenjenih za univerzalne optičke memorije. Na osnovu poredenja karakteristika čipova u dvije pomenute tehnologije pokazano je da bolja tehnologija ne znači uvijek i bolje performanse. Na kraju su dati odgovarajući zaključci i istaknuti najznačajniji naučni doprinosi doktorske disertacije.

Sažetak na engleskom (njemačkom ili francuskom) jeziku

An optical receiver with variable transimpedance based on BJT translinear loop in integrated BiCMOS technology, intended for universal optical storage systems, is presented in this doctoral thesis. This optoelectronic integrated circuit belongs to the group of optical receivers with variable-gain current amplifiers. PIN photodiode is integrated on the same chip. In this doctoral thesis, classification of optical receivers is also given, as well as a review of the optical receivers with variable transimpedance. The design of optical receiver with variable transimpedance based on BJT translinear loop and corresponding mathematical models are shown. The gain control of the optical receiver is also described. Detailed analysis of frequency characteristics and stability, as well as noise analysis, is performed. ASIC chips with optical receiver with variable transimpedance based on BJT translinear loop are fabricated in 0.6 µm BiCMOS silicon technology and 0.35 µm BiCMOS silicon-germanium technology. An overview of experimentally achieved results is given. The analysis of all important static (linearity error of output voltage versus photodiode current. transimpedance. photo-sensitivity, offset voltage, maximal power consumption) and dynamic (frequency response, transient response, noise) characteristics of the optical receiver. as well as comparison with corresponding characteristics of existing optical receivers is performed. Through given comparative analysis, it is proven that the proposed optical receiver represents the best design achieved till now among optical receivers with variable transimpedance intended for universal optical storage systems. This optical receiver has the largest transimpedance, the largest photo-sensitivity, the largest transimpedance (photosensitivity) dynamic range, and the largest transimpedance-bandwidth product in the area of optical receivers with variable transimpedance intended for universal optical storage systems. Comparing the same characteristics of chips made in two aforementioned technologies, it is concluded that better technology doesn't always mean better performances. In the end, the appropriate conclusions are given, and the most important scientific contributions of this doctoral thesis are highlighted.

Ključne riječi

translinearne petlja sa bipolarnim tranzistorima, optički prijemnik, optički sistem za skladištenje podataka, optoelektronsko integrisano kolo, transimpedansni pojačavač, naponom kontrolisan strujni pojačavač

Ključne riječi na engleskom jeziku

BJT translinear loop, optical sensor, optical storage system, optoelectronic integrated circuit, transimpedance amplifier, voltage-controlled current amplifier

Naučna oblast/uža naučna oblast

Analogna integrisana kola / Optoelektronska integrisana kola

Naučna oblast/uža naučna oblast na engleskom jeziku

Analog integrated circuits / Optoelectronic integrated circuits

Ostali podaci

IZJAVA O KORIŠĆENJU

Ovlašćujem Univerzitetsku biblioteku da u Digitalni arhlv Univerziteta Crne Gore unese doktorsku disertaciju pod naslovom

Optički prijemnik sa promjenijivom transimpedansom u integrisanoj BiCMOS tehnologiji na bazi translinearne petije sa bipolarnim tranzistorima

koja je moj autorski rad.

Doktorska disertacija, pohranjena u Digitalni arhiv Univerziteta Crne Gore, može se koristiti pod uslovima definisanim licencom Kreativne zajednice (Creative Commmons), za koju sam se odlučio/la¹.

Autorstvo Autorstvo – bez prerada Autorstvo – dijelitl pod istlm uslovima <u>x Autorstvo – nekomercijalno</u> Autorstvo – nekomercijalno – bez prerada Autorstvo – nekomercijalno – dijeliti pod istim uslovima

Potpis doktoranda

Erceg Milera

Doc. dr Milena Erceg

U Podgorici, 7.02.2022.

¹ Odabrati (čekirati) jednu od šest ponuđenih licenci (kratak opis licenci dat je na poleđini ovog priloga)

Autorstvo

Licenca sa najširim obimom prava korišćenja. Dozvoljavaju se prerade, umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio).

Djelo se može koristiti i u komercijalne svrhe.

Autorstvo – bez prerada

Dozvoljava se umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Djelo se ne može mijenjati, preoblikovati ili koristiti u drugom djelu.

Licenca dozvoljava komercijalnu upotrebu djela.

Autorstvo – dijeliti pod istim uslovima

Dozvoljava se umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Ukoliko se djelo mijenja, preoblikuje ili koristi u drugom djelu, prerade se moraju distribuirati pod istom ili sličnom licencom.

Ova licenca dozvoljava komercijalnu upotrebu djela i prerada. Slična je softverskim licencama, odnosno licencama otvorenog koda.

Autorstvo – nekomercijalno

Dozvoljavaju se prerade, umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio).

Komercijalna upotreba djela nije dozvoljena.

Autorstvo – nekomercijalno – bez prerada

Licenca kojom se u najvećoj mjeri ograničavaju prava korišćenja djela. Dozvoljava se umnožavanje, distribucija i javno saopštavanje djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Djelo se ne može mijenjati, preoblikovati ili koristiti u drugom djelu.

Komercijalna upotreba djela nije dozvoljena.

Autorstvo – nekomercijalno – dijeliti pod istim uslovima

Dozvoljava se umnožavanje, distribucija, javno saopštavanje i prerada djela, pod uslovom da se navede ime izvornog autora (onako kako je izvorni autor ili davalac licence odredio). Ukoliko se djelo mijenja, preoblikuje ili koristi u drugom djelu, prerada se mora distribuirati pod istom ili sličnom licencom.

Djelo i prerade se ne mogu koristiti u komercijalne svrhe.