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Introduction

The theory of hypercompositional structures (called also the theory of hyperstructures) 
was introduced in 1934 by F. Marty, when he gave the definition of a hypergroup and 
presented some of its properties and applications to algebraic functions, rational frac- 
tions and non-commutative groups. Hyperstructures represent an independent line of 
research, but they are also a tool of investigation in many other fields like: Geometry, 
Graphs and Hypergraphs, Topology, Cryptography, Code Theory, Automata Theory, 
Probability, Theory of Fuzzy Sets. We may say that the algebraic hypergroups are the 
most natural generalization of the classical groups: the binary operation of groups is 
extended to a binary multivalued operation, called hyperoperation or hyperproduct, 
that associates with any couple of elements of a given set, a non-empty subset of it. 
In 1934 F. Marty gave the first example of a hypergroup, which was the motivation 
for introducing this concept. The quotient structure G/H,  where G is a group and H 
is a subgroup of it is not a group, but a hypergroup. In a special case, when is a 
normal subgroup, the corresponding quotient becomes a group, which is again a hyper- 
group. Analogously to the notion of a hypergroup, the other generalizations of algebraic 
structures have been arised subsequently. The hyperrings are natural generalizations of 
rings, where one operation in the ring becomes a hyperoperation. Hyperfield is a hyper- 
structure which generalizes the notion of a field. Similarly, the notions of hyperlattices, 
hypermodules, etc are introduced. Besides, in [69], T. Vougiouklis introduced the new 
class of hyperstructures, so called Hv— structures. We may say that Hv— structures 
generalize the well-known algebraic structures, where the associative and distributive 
laws are replaced with their weak versions. These algebraic hyperstructures are the sub- 
ject of interest for many researchers nowadays. For a detailed historical development 
of algebraic hyperstructures we refer to [32].

The connections between fuzzy sets and algebraic structures were mostly considered 
by Iranian mathematicians, where they observed that the composition of the elements 
from H does not give a subset, but a fuzzy set on H. Unlike in an ordinary set, where we 
have exactly two possibilities: an element belongs to the set, or it does not belong to the 
set, in the fuzzy set every element has a certain degree of membership. Fuzzy sets were
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introduced by Zadeh in [71], where he introduced the concept of fuzzy set regarding 
it as the extension of the notion of the set. In the fuzzy set theory, the membership 
function takes the values from the segment [0, 1], while in the classical set theory the 
characteristic function can take only two values, 0 and 1. Actually, the fuzzy set is an 
ordered pair containing the subset of universe set, and the membership function which 
maps elements to the segment [0,1]. However, we usually use term fuzzy set when we 
refer to the membership function.

The fuzzy sets and algebraic structures have been firstly connected in 1971, when A. 
Rosenfeld gave the definition of fuzzy subgroup of a group. After twenty-eight years, 
B. Davvaz extended this definition, introducing the fuzzy subhypergroup of a (crisp) 
hypergroup, which is a fuzzy algebraic hyperstructure. The study of the fuzzy hyper- 
structures started only a few years ago, with a paper about fuzzy hypergroups. Then, 
in 2009, V. Leoreanu-Fotea and B. Davvaz introduced the notions of fuzzy hyperrings 
and fuzzy hypermodules. Very important connection between fuzzy sets and hyper- 
groups was established by Corsini, in [16], by defining a hyperoperation as a mean of 
fuzzy subsets, obtaining a join space. The other connection, which is very significant 
for our research is established via the grade fuzzy set /Z introduced also by Corsini [16]. 
Besides, the grade fuzzy set is used for the definition of a fuzzy grade, which represents 
the number of non-isomorphic join spaces and fuzzy sets associated with a given hy- 
pergroupoid. The theory of hypergroups associated with fuzzy sets represents a new 
research direction which preoccupies researchers in the last two decades. Untill now one 
distinguishes three principal approaches: the study of new crisp hyperoperations ob- 
tained by means of fuzzy sets; the study of fuzzy subhypergroups (fuzzy sets whose level 
sets are crisp hypergroups); the fuzzy hypergroups, i.e., structures endowed with fuzzy 
hyperoperations. The overview of this theory can be found in the monograph ” Fuzzy 
algebraic hyperstructures: an introduction” written by Davvaz and Cristea [29].

One of the most important concepts in hyperstructure theory are certain relations, 
being called fundamental relations. These equivalences play a crucial role in obtaining 
quotient structures. We can divide fundamental relations into two groups: the first 
group is contained of the relations a ,/?,7  which are defined on proper hyperstructures 
such that the obtained quotient structures (hyperstructures modulo relation) are clas- 
sical algebraic structures. The relation a is defined on a hyperring, while the other two 
relations (/?,7 ) are defined on a semihypergroup. Consequently, the resulting quotient 
structures are ring and semigroup. Moreover, semihypergroup modulo relation 7 gives 
a commutative semigroup.

The fundamental relations are the smallest equivalence relations such that the quo- 
tient structures defined on the support set of a hyperstructure becomes a classical 
structures. These relations represent the link between the classical algebraic structures
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and algebraic hyperstructures, and besides, it could be noted that the classical algebraic 
structures impersonate special cases of algebraic hyperstructures. The second group of 
fundamental relations consists relations introduced by Jantosciak in [42], ffe noticed 
that sometimes a hyperproduct on given set does not make a distinction between a 
pair of elements of the set. In other words, the elements play exchangeable roles with 
respect to the hyperoperation. It inspired Jantosciak to define three relation with the 
aim to identify the elements with the same behaviour.

[42] Two elements x,y in a hypergroup ( H , o) are called: operationally equivalent, if 
their hyperproducts with all elements in H are the same: xoa = yoa, and aox =  aoy, 
for any a in H ; inseparable, if x belongs to the same hyperproducts aob &s y, for all a, b 
in H; essentially indistinguishable, if they are operationally equivalent and inseparable.

With the help of these three relations, Jantosciak introduced the concept of re- 
ducibility. He defined a reduced hypergroup as a hypergroup where the equivalence 
class of each element with respect to the essentially indistinguishable relation is a sin- 
gleton [42], Moreover, he proved that the quotient hypergroup obtained by factorizing 
a hypergroup modulo the essential indistinguishable relation always gives a reduced 
hypergroup, which he called a reduced form. Motivated by this property, the same au- 
thor proposed that the study of reducibility can be splited in two directions: the study 
of reduced hypergroups, and the study of all hypergroups having the same reduced 
form [42] . The study of the reducibility will be also developed in the PhD thesis to 
the fuzzy case in one direction. We will study indistinguishability between the images 
of the elements of a classical hypergroup through a fuzzy set. The second direction 
is studying the indistinguishability between the elements of the fuzzy hypergroup. In 
particular, we introduce the notion of reduced fuzzy hypergroup, which is a fuzzy hy- 
pergroup which is reduced, and the notion of fuzzy reduced hypergroup, which is a 
hypergroup endowed with a fuzzy set which is reduced. In order to define the concept 
of a fuzzy reduced hypergroup, we introduce equivalences: fuzzy operation equivalence, 
fuzzy inseparability and fuzzy essential indistinguishability. Further, a fuzzy reduced 
hypergroup is defined as a hypergroup where the equivalence class of each element with 
respect to the fuzzy essential indistinguishability is a singleton [22],

In the prelim inary chapter we present basic definitions and notions related to the 
hypergroups, hyperrings and fuzzy sets. In the first part of the chapter we give the 
definition of a hypergroup, after which we define all particular types of hypergroups 
which are investigated further in the thesis. Therefter, we give the definition of a funda- 
mental relation, and introduce the relations and 7*, which provide that factorizing a 
hypergroup (semihypergroup) by them gives a group (semigroup). Further in the chap- 
ter we define all three types of hyperrings. We recall first the hyperring containing an



additive hyperoperation and a multiplicative operation, afterwards we present the hy- 
perring with an additive operation and a multiplicative hyperoperation, and at the end 
we give the dehnition of a general hyperring, where, both, addition and multiplication 
are hyperoperations. We present important classes of hyperrings in order to study their 
reducibility later in the thesis. At the end of the chapter we illustrate the dehnition of 
the fuzzy set and explain in detail its connection with algebraic hyperstructures. We 
explain here the well known fuzzy set /X which is used in our study of fuzzy reducibility. 
Also, we describe a procedure of construction of the sequence of join spaces and fuzzy 
sets associated with a given hypergroupoid. In the same section we recall the dehnition 
of the fuzzy hyperoperation and fuzzy hypersemigroup.

The second chapter deals with the reducibility property in hypergroups. First, 
we present the motivation and expose early ideas related to this concept, as it is pre- 
sented in the paper of Jantosciak [42], which was the major inspiration for the thesis. 
In the hrst part of the chapter, we present some results related to the reducibility in 
hypergroups associated with binary relations [23]. Then we focus on the study of re- 
ducibility for several types of hypergroups. In this chapter we present results which are 
the subject of the article Fuzzy reduced hypergroup, published in Mathematics, 2020. 
by Kankaraš and Cristea [45], and the article Reducibility in Corsini hypergroups, by 
Kankaraš [44], Then we focus on the study of reducibility for several types of hyper- 
groups. In this chapter we present results which are the subject of the article Fuzzy 
reduced hypergroup, published in Mathematics, 2020. by Kankaraš and Cristea, and 
the article Reducibility in Corsini hypergroups, by Kankaraš in Analele Stnntifice Uni- 
versitatii Ovidius Constanta, Sena Matematica in 2021. We prove that any canonical 
hypergroup is reduced, and as the consequence, we get that any hypergroup contained 
of partial scalar identities (or i.p.s hypergroup) is reduced, too. The properties of i.p.s. 
hypergroups presented in this chapter are important for the further study of their fuzzy 
reducibilility. Further in the chapter we study reducibility for some particular classes 
of cyclic hypergroups, and we show that their reducibility depends on many condi- 
tions. Also, we study reducibility for a very important class of hypergroups, called 
complete hypergroups, and conclude that any proper complete hypergroup is not re- 
duced. We later use this result for the study of reducibility in complete hyperrings. 
In the last section of Chapter 2 we give a neccesary and sufficient condition for the 
Corsini hypergroup to be reduced. As a consequence of this statement, we get that 
the well-known B-hypergroup, which is a special case of the Corsini hypergroup, is a 
reduced hypergroup. Also, we determine whether the direct products of hypergroups 
containing Corsini hypergroups, are reduced or not.

The third chapter deals with the fuzzy reducibility in hypergroups, i.e., it contains 
the study of reducibility in crisp hypergroups endowed with a fuzzy set. In the thesis,

IV



the fuzzy reducibility is studied with respect to the grade fuzzy set /I  In the hrst part of 
the chapter, we are introduced to the concept of fuzzy reducibility, which represents the 
one direction how the reducibility concept can be extended to the fuzzy case. Therefter, 
we investigate the fuzzy reducibility for several types of hypergroups. The chapter 
contains results published in the articles Fuzzy reduced hypergroups and Reducibility in 
Corsini hypergroups. We prove that any total hypergroup is not reduced, neither fuzzy- 
reduced. Also, we prove that any proper complete hypergroup is not fuzzy reduced, 
same as it is the hypergroup with partial scalar identities. Later on, we examine 
the reducibilility and the fuzzy reducibility for a specihc type of non-complete 1 — 
hypergroups dehned by Corsini and Cristea in [17], and we prove that it is not reduced, 
nor fuzzy reduced. In the last section we prove that Corsini hypergroup is not fuzzy 
reduced with respect to the grade fuzzy set p. At the end of the section, we consider 
the direct product of Corsini hypergroups and prove that the resulting productional 
hypergroup is not fuzzy reduced. The chapter concludes with a brief review of reduced 
fuzzy hypergroups. This is the second direction of the fuzzyhcation of the reducibility 
concept, which will be the subject of our research in the future.

The reducibility in hyperrings is the topic of the fourth chapter. At the begin- 
ning of the chapter we introduce new equivalence relations and extend the reducibility 
concept to the hyperrings. In this case, we introduce equivalence relations with re- 
spect to the both, additive and multiplicative hyperoperation. We determine how the 
reducibility in hyperrings depends on the reducibility in hypergroupoids of which it 
is composed. Further, we examine the reducibility for the specihc types of general 
hyperrings. In particular, we prove that any complete hyperring is not reduced. We 
determine conditions such that the ( H,R) — hyperring is reduced. Also, we present 
some properties of the reducibility in some particular types of hyperrings, as Hv— rings 
with P— hyperoperations, hyperrings of formal series and others.

The last chapter contains some new research ideas concerning this study. Some 
aims of our further research are related to the study of the reducibility in fuzzy hy- 
perstructures, especially in fuzzy hypergroups. Also, we intend to extend the fuzzy 
reducibility concept for the hyperrings and investigate the fuzzy reducibiity for certain 
types of general hyperrings.

Podgorica, March 2022. Milica Kankaraš
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Izvod iz teze

Teoriju hiperkompozicionalnih struktura (koja se još naziva i teorijom hiperstruktura) 
uveo je 1934. francuski matematičar F. Marty, kada je dehnisao hipergrupu i prikazao 
neka njena svojstva i primjene u oblastima algebarskih funkcija i ne-komutativnih 
grupa. Hiperstrukture predstavljaju nezavisnu oblast istraživanja, a takođe mogu 
da služe i kao ” alat” za istraživanje u drugim oblastima kao što su: Geometrija, 
Grafovi i Hipergrafovi, Topologija, Kriptografija, Teorija kodiranja, Teorija automata, 
Vjerovatnoća, Teorija fazi skupova. Možemo reći da su algebarske hipergrupe prirodno 
uopštenje klasičnih grupa: binarna operacija grupe se proširuje na binarnu multivrijed- 
nosnu operaciju, nazvanu hiperoperacijom ili hiperproizvodom, koja svakom paru ele- 
menata zadatog skupa pridružuje njegov neprazni podskup. F. Marty je 1934. godine 
dao prvi primjer hipegrupe, što je ujedno bila motivacija za uvođenje ovog koncepta. 
Ako je G grupa, a H njena podgrupa tada količnička (faktor) struktura u opštem 
slučaju nije grupa, nego hipergrupa. U specijalnom slučaju, kada je H normalna pod- 
grupa, odgovarajuća količnička struktura je grupa, a grupa je ujedno i hipergrupa.

Za neprazan skup H, neka je V*(H) familija nepraznih podskupova skupa H. Binarna 
hiperoperacija, koju još nazivamo i hiperproizvodom je preslikavanje o : x —
V*(H), a uređeni par (H, o) s e  naziva hipergrupoidom. Važno je naglasiti da je u 
hipergrupoidu hiperproizvod xoy dva proizvoljna elementa i iz neprazan podskup 
skupa H, dok je u klasičnim algebarskim strukturama, rezultat binarne operacije između 
dva elementa samo jedan element inicijalnog skupa (koji se još naziva i nosač). Ako je 
hiperoperacija asocijativna, tj. važi (aob)oc= za sve elemente e tada
se hiperkompozicionalna struktura (H,o) naziva semihipergrupom. Semihipergrupa 
postaje hipergrupa ako važi i reproducibilnost : x o H  = H o x  = Hza sve e

Hiperoperacija o se proširuje na neprazne skupove B skupa i za e važi 
[32]:

A o B  — [̂ J aob A o x =  A o {x} x o B — {x}oB.
a€A,b€B

VI



Dakle, jednakost (a o 6) o c = ao o implicira da

|̂ J uo c =  |̂ J a o v.
uEaob vEboc

Analogno pojmu hipergrupe, uskoro su se pojavile i ostale generalizacije algebarskih 
struktura. Hiperprsteni su generalizacije struktura prstena, gdje se jedna od operacija u 
prstenu zamijeni hiperoperacijom. Hiperpolje uopštava pojam polja. Slično su uvedeni 
i pojmovi hiperrešetki, hipermodula. Osim toga, T. Vougiouklis je u [69], uveo novu 
klasu hiperstruktura, takozvanih Hv— struktura. Hv— strukture su generalizacije poz- 
natih algebarskih struktura, gdje su asocijativni i distributivni zakoni zamijenjeni nji- 
hovim "slabijim” verzijama. Ove algebarske strukture su predmet interesovanja velikog 
broja istraživača danas. Za detaljan istorijski razvoj teorije algebarskih hiperstruktura, 
čitaocima preporučujemo knjigu [32],

Vezama između fazi skupova i algebarskih struktura su se pretežno bavili iranski 
matematičari, koji su posmatrali kompozicije elemenata iz skupa H koje kao rezultat ne 
daju podskup skupa H , već fazi skup na H. Za razliku od klasičnog skupa, gdje element 
pripada ili ne pripada skupu, fazi skup dozvoljava da element ima određeni stepen 
pripadnosti skupu. Pojam fazi skupa je uveo Zadeh, u [71], gdje je dehnisao koncept 
fazi skupa kao proširenje pojma skupa. U teoriji fazi skupova, funkcija pripadnosti 
uzima vrijednosti sa segmenta [0, 1], dok u klasičnoj teoriji skupova karakteristična 
funkcija uzima samo vrijednosti 0 ili 1. Preciznije, fazi skup se dehniše kao uređeni par 
koji sadrži podskup univerzalnog skupa, i funkciju pripadnosti koja preslikava element 
iz tog skupa na segment [0,1], Međutim, često upotrebljavamo termin fazi skup kada 
govorimo o funkciji pripadnosti.

Definicija 0.1. [32] Neka je X skup. Fazi podskup A skupa X se
pnpadnosti : X  —> [0,1] koja svakoj tački € pridružuje ocjenu stepen 
pnpadnosti Va(x ) € [0, 1],

Prve veze izmedju fazi skupova i algebarskih struktura uspostavio je A. Rosenfeld 
1971. godine, kada je dehnisao pojam fazi podgrupe grupe. 28 godina kasnije, B. 
Davvaz je proširio ovu dehniciju na slučaj algebarskih hiperstruktura, uvodeći koncept 
fazi podhipergrupe (obične) hipergrupe. Proučavanje fazi hiperstruktura je započelo 
samo par godina prije, člankom o fazi hipergrupama. 2009. godine V. Leoreanu-Fotea 
i B. Davvaz uvode pojmove fazi hiperprstena i fazi hipermodula. Veoma značajnu 
vezu između fazi skupova i hipergrupa uspostavio je Corsini, u [16], gdje je dehnisao 
hiperoperaciju kao sredinu fazi podskupova, dobivši tako pndruženi prostor. Druga 
konekcija, koja je od velikog značaja za naše istraživanje, uspostavljena je uz pomoć
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grade fazi skupa (grade fuzzy set) Jl, kog je takođe uveo Corsini [16]. Grade fazi skup 
se koristi za definisanje fazi grade-a, koji predstavlja broj neizomorfnih pridruženih 
prostora i fazi skupova povezanih sa zadatim hipergrupoidom. Teorija hipergrupa 
povezanih sa fazi skupovima predstavlja novi pravac u istraživanju u teoriji hiperstruk- 
tura koji je doživio ekspanziju posljednjih 20 godina. Razlikujemo tri osnovna pristupa 
u ovom istraživanju: Izučavanje ” običnih” hiperoperacija dobijenih pomoću sredina 
fazi skupova; Izučavanje fazi podhipergrupa (fazi skupovi čiji su nivo skupovi ” obične” 
hipergrupe); Izučavanje fazi hipergrupa, tj. struktura obogaćenih sa fazi hiperoperaci- 
jama. Monografija ” Fuzzy algebraic hyperstructures: an introduction” čiji su autori 
Davvaz i Cristea [29], sadrži pregled ove teorije.

U teoriji hiperstruktura određene ekvivalencije igraju ključnu ulogu u dobijanju 
količničkih struktura, a te relacije nazivamo fundamentalnim relacijama. Fundamen- 
talne relacije mogu da se podijele u dvije grupe: prva grupa sadrži relacije a, (3,7 
definisane na hiperprstenu (prva) i na semihipergrupi (druge dvije), takve da dobi- 
jena količnička struktura predstavlja prsten, semigrupu i komutativnu semigrupu (polu- 
grupu), respektivno. Fundamentalne relacije su najmanje relacije ekvivalencije takve 
da količničke strukture koje dobijamo faktorisanjem hiperstruktura po ovim relaci- 
jama postaju klasične strukture. Ove relacije predstavljaju ” most” između klasičnih 
algebarskih struktura i hiperstruktura, a osim toga, primijećujemo da sada klasične 
strukture možemo da posmatramo kao specijalne slučajeve algebarskih hiperstruktura.

Da bismo uveli preciznu dehniciju fundamentalnih relacija potrebno je dehnisati 
regularne relacije, kao i jako (strogo) regularne relacije.

Definicija 0.2. [13] Neka je (H,o) hipergrupoid, a,b G H relacija ekvivalencije 
na H. Tada je relacija p lijevo regularna ako:

apb =>■ (Vu G H,\/x E u o a,3y E u o b : xpy
1 (1)

Vw G H,Vy G u o b, G o

Relacija p je desno regularna ako:

apb =>■ (Vu G H, \/x E a o u,3y E b o xpy
1 (2)

Vu e H, \/yG b o u, 3xG a o a :  %py)

Relacija p je regularna ako je lijevo i desno regularna.
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Definicija 0.3. [13] Neka je (H, o) hipergrupoid, a,b E H relacija ekvivalencije
na H. Tada je relacija p jako lijevo regularna ako:

apb =>• Va G H,\/x E u o a,\/y E u o b : xpy.

Relacija p je jako desno regularna ako:

apb =>• \/u EH,\/x E a o u,\/y E b o u : xpy.

Relacija p je jako regularna ako je jako lijevo i jako desno regularna.

T vrđen je 0.1. [13] Ukoliko je (H,o) hipergrupa i relacije ekvivalencije na H, tada
je R regularna ako i samo oko je ( H/R, ®) hipergrupa, x ® e x o

T vrđen je 0.2. [32] Ako je (H,o) hipergrupa, a R relacija ekvivalencije na H, tada je 
R jako regularna ako i samo ako je (H/  R,®) grupa.

Jedna od najpoznatijih i najznačajnih fundamentalnih relacija u teoriji hiperstruk- 
tura je relacija (3 .

Definicija 0.4. [46] Neka je (H,o) semihipergrupa in >  N. Defimšimo relaciju 
fin na sljedeći način:

n

xfiny ako postoje a\,a2, ■ ■ ■ ,antako da y} C a»
i=  1

i neka
/J =  Ura>i fin, g d j e j e  

dijagonalna relacija na H.

Relacija ,3 je refleksivna i simetrična. Označimo sa fi* tranzitivno zatvorenje relacije
P-

Teorem a 0.1. [46] j3* je najmanja jako regularna relacija ekvivalencije na H u smislu 
inkluzije.

Teorem a 0.2. [46] Neka je (H,o) semihipergrupa (hipergrupa), relacija fi*
najmanja relacija ekvivalencije takva da je količnički skup /  semigrupa (grupa).

Relacija B'* se naziva fundamentalnom relacijom na H, a količnički skup H/(3* se 
naziva fundamentalnom semigrupom (grupom). Važno je naglasiti da se u hipergrupi
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fundamentalna relacija 0 poklapa sa relacijom [32], Dakle, kolićnicki skup dobijen 
faktorisanjem hipergrupe (sa odgovarajućom operacijom) po relaciji (3 je grupa.

U poglavlju Prelim inaries se mogu naći definicije drugih značajnih fundamentalnih 
relacija.

Drugu grupa relacija koje se takođe nazivaju fundamentalnim čine relacije koje je 
uveo Jantosciak [42] da bi defmisao pojam reducibilne hipergrupe.

Jantosciak je primijetio da hiperproizvod na zadatom skupu nekada ne pravi razliku 
između para elemenata u skupu, tj., elementi nekada igraju istu ulogu u odnosu na 
zadatu hiperoperaciju. Jantosciak je, motivisan primijećenim ponašanjem elemenata 
defmisao određene ekvivalencije u cilju identihkovanja elemenata sa istim ponašanjem.

[42] Dva elementa x,yu hipergrupi (H, o) su: operaciono ekvivalentna, ako su njihovi 
hiperproizvodi sa svim elementima u H isti: za sve a u
H ; nerazdvojiva, ako x pripada istim hiperproizvodima o kao y, za sve a, b in H; 
esencijalno nerazlikujuća, ako su operaciono ekvivalentni i nerazdvojivi.

Definicija 0.5. [42] Reducibilna hipergrupa je hipergrupa u kojoj je klasa ekvivalencije 
svakog elementa u odnosu na relaciju esencijalno nerazlikujući ~ e jednoelementm skup, 
tj., za sve elemente x€ H,važi xe = {x}.

Osim gore navedene defmicije, isti autor je dokazao da je količnička hipergrupa, do- 
bijena faktorisanjem hipergrupe po relaciji esencijalno nerazlikujući uvijek reducibilna 
i nazvao ju je reducubilna formom. Motivisan ovim svojstvom, pomenuti autor je 
predložio da istraživanje reducibilnosti može dalje da se razvija u dva smjera: izučavanje 
reducibilnih grupa i izučavanje svih hipergrupa koje imaju istu reducibilnu formu.

U daljem tekstu dajemo primjer reducibilne hipergrupe.

Prim jer 0.6. Neka je (H, o) hipergrupa, gdje je hiperoperacija ” o ” dehnisana sa
sljedećom tabelom:

o a b c d
a a a a, b, c a, b, d
b a a a, b, c a, b, d
c a, b, c a, b, c a, b, c c, d
d a, b, d a, b, d c, d a, b, d

(3)

Lako je primijetiti da a ~ 0 b, jer su vrste (i kolone) koje odgovaraju elementima a 
i b potpuno iste, otuda: aQ = bQ = {a,6}, dok je cQ = {c }  i da = {d}. S druge strane, 
klasa ekvivalencije svakog elementa skupa H u odnosu na relaciju je jednoelementni 
skup, kao i u odnosu na relaciju ~ e . Posljedično, hipergrupa (H, o) je reducibilna.



Izučavanje redicibilnosti će u mojoj disertaciji biti prošireno na fazi slučaj u jednom 
pravcu. Posmatraćemo esencijalno nerazlikovanje između slika elemenata u klasičnoj 
hipergrupoj ” kroz” fazi skup. Drugi pravac je izučavanje esencijalnog nerazlikovanja 
između elemenata fazi hipergupe. U cilju izučavanja reducibilnosti proširene na ” fazi 
slučaj” , uvodimo pojam reducibilne fazi hipergrupe, tj. fazi hipergrupe koja je re- 
ducibilna, kao i pojam fazi reducibilne hipergrupe, tj. hipergrupe obogaćene sa fazi 
skupom (na kojoj je dehsan fazi skup) koja je reducibilna. Da bismo definisali kon- 
cept fazi reducibilne hipegrupe, uvodimo nove ekvivalencije po ugledu na one koje je 
definisao Jantosciak: fazi operaciona ekvivalentnostjazi nerazlikovanjei fazi esencijalno 
nerazlikovanje.

Definicija 0.7. [22] U hipergrupi ( H , o )  na kojoj je zadat fazi skup p, definišemo 
sljedeće ekvivalencije:

1. x iy su fazi operaciono ekmvalentm i pišemo ~ /0 ako, za sve e =
p(y o a) ip(a o x) = p(a o y);

2. x i y su fazi nerazdvojivi i pišemo i  i/ ako e p(aob) p(y) G p,(aob),
za a,be H;

3. x iy su fazi esencijalno nerazlikujući i pišemo ~ / e ako su oni fazi operaciono 
ekmvalentm i fazi nerazdvojivi.

[22] Hipergrupa (H, o) je fazi reducibilna hipergrupa ako je klasa ekvivalencije svakog 
elementa u odnosu na relaciju fazi esencijalno nerazlikovanje jednoelementni skup.

Važnu klasa hiperstruktura koju ćemo posmatrati u disertaciji čine strukture hiper- 
prstena. Hiperprsteni su hiperkompozicionalne strukture na kom su zadate dvije (hiper) 
operacije (tako da nisu obje operacije), sa sličnim svojstvima koje imaju operacije u 
prstenu. Postoje različiti tipovi hiperprstena u zavisnosti od toga kako su zadati adi- 
tivni i multiplikativni dio, tj., da li su oni definisani kao operacije ili hiperoperacije. 
Hiperprsten može da se definiše pomoću dvije hiperoperacije, ili sa jednom operacijom 
i jednom hiperoperacijom. Razlikujemo tri tipa hiperprstena: aditivni, multiplikativni 
i generalni. Aditivni hiperprsten je hiperstruktura na kojoj su zadate aditivna hiper- 
operacija i multiplikativna operacija, gdje je multiplikativna operacija distributivna u 
odnosu na aditivnu hiperoperaciju. Najpoznatiji aditivni hiperprsten je definisao Kras- 
ner 1983. godine [47]. Multiplikativni hiperprsten je hiperprsten na kome su zadate 
aditivna operacija i multiplikativna hiperoperacija, gdje je multiplikativna hiperop- 
eracija distributivna u odnosu na aditivnu operaciju. Najširu klasu hiperprstena čine 
generalni hiperprsteni. Generalni hiperprsteni su hiperstrukture na kojima su zadate 
dvije hiperoperacije, povezane distributivnim svojstvom.
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Definicija 0.8. [52] Hiperkompozicionalna struktura ( , ©, ©) je hiperringoid ako

1. (iž, ©) je hipergrupa.

2. (R, ©) je semigrupa.

3. Operacija ”© ” je distributivna s obje strane u odnosu na hiperoperaciju ”© .”

Ako su i sabiranje i množenje hiperoperacije, tada hiperringoid postaje generalni 
hiperprsten.

Definicija 0.9. [67] Uređena trojka (R, ©, ©) je generalni hiperprsten ako:

1. (R,®) je hipergrupa.

2. (R, ©) je semihipergrupa.

3. Množenje © je distributivno u odnosu na ©, tj., za sve € R © © c) =
a © 6 © a © c i ( a © 6) © c  =  a © c © 6 © c.

U poglavlju Prelim inaries prezentujemo osnovne dehnicije i pojmove povezane sa 
hipergrupama, hiperprstenima i fazi skupovima. U prvom dijelu ovog poglavlja da- 
jemo defmiciju hipergrupe, nakon čega defmišemo sve tipove hipergrupa koje su pred- 
met istraživanja dalje u tezi. Nakon toga, uvodimo defmiciju fundamentalne relacije i 
uvodimo relacije j3* i 7*, koje omogućavaju da faktorisanje hipergrupe (semihipergrupe) 
po datim relacijama daje grupu (semigrupu). Dalje u ovom poglavlju defmišemo sva 
tri tipa hiperprstena. Na početku se podsjećamo defmicije hiperprstena koji sadrži adi- 
tivnu hiperoperaciju i multiplikativnu operaciju, a nakon toga predstavljamo prsten sa 
aditivnom operacijom i multiplikativnom hiperoperacijom, a zatim uvodimo dehniciju 
generalnog hiperprstena, gdje su i sabiranje i množenje hiperoperacije. Osim toga, pred- 
stavljamo važne klase hiperprstena s ciljem da izučavamo njihovu reducibilnost kasnije 
u tezi. Na kraju poglavlja uvodimo defmiciju fazi skupa i detaljno objašnjavamo nje- 
govu vezu sa algebarskim hiperstrukturama. Takođe, u ovom poglavlju izučavamo bitna 
svojstva poznatog fazi skupa jl(grade fazi skup), koji koristimo dalje u proučavanju fazi 
redicibilnosti. Takođe, opisujemo proceduru konstrukcije niza pridruženih prostora i 
fazi skupova povezanih sa zadatim hipergrupoidom. U istoj sekciji uvodimo dehnicije 
fazi hiperoperacije i fazi hipersemigrupe.

D rugo poglavlje se bavi sa ispitivanjem reducibilnosti u hipergrupama. U pr- 
vom dijelu ovog poglavlja izlažemo motivaciju i rane ideje koje su povezane s ovim 
konceptom, kao što je prikazano u članku [42], koji je predstavljao glavnu inspiraciju 
za pisanje ove teze. U prvom dijelu poglavlja, prezentujemo neke rezultate o re- 
ducibilnosti hipergrupa povezanih sa binarnim relacijama [23]. Zatim se fokusiramo



na istraživanje reducibilnosti za više različitih tipova hipergrupa. U ovom poglavlju 
predstavljamo rezultate koji su objavljeni u člancima Fuzzy reduced , koji
su 2020. godine objavile Kankaraš i Cristea u , i članka Reducibilitg in
Corsini hypergroups, koji je objavila Kankaraš u Analele Stiintifice Universitatii Ovid- 
ius Constanta, Seria Matematica2021. godine. Dokazujemo da je proizvoljna kanonska
hipergrupa reducibilna, i kao posljedicu dobijamo da je proizvoljna hipergrupa sa par- 
cijalnim skalarnim identitetima (ili i.p.s. hipergrupa) takođe reducibilna. Svojstva 
i.p.s. hipergrupe prezentovana u ovom poglavlju su značajna za dalje istraživanje 
fazi reducibilnosti ovih hipergrupa. Dalje u ovom poglavlju izučavamo reducibilnost 
za određene klase cikličnih hipergrupa, i pokazujemo da njihova reducibilnost zavisi 
od više uslova. Takođe, izučavamo reducibilnost jako značajne klase hipergrupa, tzv. 
kompletnih grupa i zaključujemo da svaka prava kompletna hipergupa nije reducibilna. 
Ovaj rezultat koristimo kasnije pri izučavanju reducibilnosti kompletnih hiperprstena. 
U posljednjoj sekciji drugog poglavlja dajemo neophodan i dovoljan uslov da Korsini- 
jeva hipergrupa (Corsini hypergroup) bude reducibilna. Kao posljedicu ovog tvrđenja, 
zaključujemo da je dobro poznata B-hipergrupa, koja je specijalan slučaj Korsinijeve 
hipegrupe, reducibilna hipergrupa. Takođe, ispitujemo da li su direktni proizvodi Ko- 
rsinijevih hipergrupa reducibilni.

Treće poglavlje se bavi fazi reducibilnošću u hipergrupama, tj. ispitivanjem re- 
ducibilnosti u ” običnim hipergrupama” na kojima je zadat fazi skup. U prvom di- 
jelu poglavlja, uvodimo koncept fazi reducibilnosti, koji predstavlja jedan od pravaca 
kako koncept reducibilnosti može da se proširi na fazi slučaj. Kasnije istražujemo 
fazi reducibilnost za više klasa hipergrupa. Poglavlje sadrži rezultate objavljene u 
člancima Fuzzy reduced hypergroups i Reducibility in Corsini hypergroups. Dokazu- 
jemo da proizvoljna totalna hipergrupa nije reducibilna, niti fazi reducibilna. Takođe, 
dokazujemo da nijedna prava kompletna hipergrupa nije fazi reducibilna, a nakon toga 
isto pokazujemo i za hipergrupu sa parcijalnim skalarnim identitima (i.p.s. hiper- 
grupa). Nakon toga, ispitujemo reducibilnost i fazi reducibilnost za posebnu klasu 
ne-kompletnih 1— hipergrupa koju su dehnisali Corsini i Cristea u [17], i pokazujemo 
da navedena hipergrupa nije reducibilna, niti fazi reducibilna. U posljednjoj sekciji 
dokazujemo da Korsinijeva hipergrupa nije fazi reducibilna u odnosu na grade fazi skup 
/I  Na kraju sekcije, posmatramo direktni proizvod Korsinijevih hipergrupa i pokazu- 
jemo da rezultujuća hipergrupa nije fazi reducibilna. Poglavlje završavamo sa kratkim 
pregledom fazi hipergrupa. Ovo je drugi pravac ’Tuzihkacije” koncepta reducibilnosti, 
koji će biti predmet našeg istraživanja u budućnosti.

Reducibilnost u hiperprstenima je tema četvrtog poglavlja ove disertacije. Lako 
je primijetiti da su u semigrupi (grupi), ekvivalencije and ekvivalentne relaciji
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jednakosti, što znaci da x~G y <=> x~; y<=̂ - x = y, pa nam izučavanje reducibil-
nosti u hiperprstenima sa jednom hiperoperacijom i jednom operacijom nije od znaćaja. 
Preciznije, nećemo se baviti izučavanjem reducibilnosti u aditivnom i multiplikativnom 
prstenu. Dakle, izučavaćemo reducibilnost samo u generalnim hiperprstenima, gdje su 
i sabiranje i množenje hiperoperacije. Za elemente x označimo sa i njihove 
klase ekvivalencije u odnosu na hiperoperacije © i 0 , respektivno, gdje r e {o,i,e} 
predstavlja tip ekvivalencije koji razmatramo.

Definicija 0.10. [21] Kažemo da su dva elementa x iy  u hiperprstenu ©, ©)
eraciono ekvivalentna, nerazdvojiva ili esencijalno nerazlikujuća ako imaju isto svojstvo 
u odnosu na obje hiperoperacije, tj.

1. x~ G y ako x© a = y © a,a © x = a © y i a Q x  = a Q y , x Q a  = y Q a ,  za sve
a e R.

2. x~i y ako xe a © bye a ©6 i xe c©  d <=> y e c © za sve e

3. Osim toga, x~ e y ako x ~0 y i x y .

Slično kao u hipergrupama, uvodimo definiciju reducibilnog hiperprstena, koristeći 
gore definisane relacije.

Definicija 0.11. [21] Hiperprsten R je reducibilni hiperprsten ako je klasa ekvivalencije 
svakog elementa xe R uodnosu na relaciju esencijalno nerazlikujući ~ e jednoelementni 
skup, tj., xe =  {x }  za sve xe R.

Klasa ekvivalencije elementa x in Ru odnosu na relaciju esencijalno nerazlikujući 
~ e se dobija kao xe = x®fl x f  = (x® fl x®) fl (x® fl xf). Lako se primjećuje da, ako
je makar jedan od hipergrupoida (R, ffi) or (R, ©) reducibilan, tada je i hiperprsten 
(R,ffi, ©) takođe reducibilan. Obrnuto, ako je (R,Q,Q) reducibilan hiperprsten, tada 

hipergrupoidi (R, ffi) i (R, ©) mogu a i ne moraju da budu reducibilni.

Određujemo kako reducibilnost u hiperprstenima zavisi od reducibilnosti u hiper- 
grupoidima od kojih je sačinjen. Dalje, ispitujemo reducibilnost u specifičnim tipovima 
generalnih prstena. Posebno, dokazujemo da kompletni hiperprsteni nisu reducibilni. 
Nakon toga određujemo uslove koji impliciraju reducibilnost (H,R)— hiperprstena. 
Takođe, prezentujemo neka zanimljiva svojstva reducibilnosti u određenim tipovima 
hiperprstena, kao što su Hv— prsteni sa P— hiperoperacijama, A — prsteni, hiper- 
prsteni formalnih redova i drugi.
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U Posljednjem  poglavlju su prezentovane nove ideje koje su povezene sa nasim 
istraživanjem. Jedan od ciljeva našeg daljeg istrazivanja je izučavanje reducibilnosti u 
fazi hiperstrukturama, posebno u fazi hipergrupama.

Definition 0.12. [60] Neka je S neprazan skup. Fazi hiperoperacija na S je preslika- 
vanje o : Sx S —>F(S), gdje je F(S) skup svih fazi podskupova skupa S. Struktura 
(S,o) je fazi hipergrupoid.

Definicija 0.13. [60] Fazi hipergrupoid (S, o) je fazi hipersemigrupa ako za sve e 
S, (a o b) o c = a o (b o c) i za svaki fazi podskup p, na S važi

(a o n)(r)
Vtes((a o t)(r) A /i(f)), ako /i 7̂  0 

0, inače
(4)

za sve

(/aoa)(r)
Vt£s (g ( i )A (to a ) (r ) ,  ako /i 7̂  0 

0, inače
(5)

Definicija 0.14. [60] Fazi hipersemigrupa (S, o) je fazi hipergrupa ako je 
Xs, za sve x u S,gdje je \s karakteristična funkcija skupa S,tj.,

Xs(x)
1 ,if G S 
0 ,ifx £ S.

(6)

Da bi defmisali reducibilnu fazi hipergrupu, uvodimo nove relacije ekvivalencije na 
fazi hipergrupi, tj. na hipergrupi na kojoj je zadata fazi hiperoperacija. Relacije imaju 
ista imena kao u slučaju ” obične” hipergrupe: operaciona ekvivalentnost, nerazdvo- 
jivost i esencijalno nerazlikovanje.

[22] Dva elementa x,yu hipergrupi (H, o) su:

1. operaciono ekvivalentna ili o-ekvivalentna, i pišemo x ~ G y, ako (x o a)(r) =  
(y o a)(r), i (a o x)(r) = (ao y)(r), za sve e

2. nerazdvojiva ili i-ekvivalentna, i pišemo x y, ako za sve e H e supp(a o 
b) y e supp(a o 6), tj., (ao b)(x) 7̂  0 4=7- (a o b)(y) 7̂  0;

3. esencijalno nerazlikujuci ili e-ekvivalentni, i pišemo x ~ e y, ako su operaciono 
ekvivalentni i nerazlikujući.
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Definicija 0.15. [22] ( H, o) je reducibilna fazi hipergrupa ako i samo ako za sve x e H 
vazi xe =  {x }.

U posljednjem poglavlju se nalaze primjeri reducibilnih fazi hipergrupa koji su mo- 
tivacija za dalji nastavak istraživanja ovog svojstva. Osim toga, namjeravamo da u 
budućnosti proširimo koncept fazi reducibilnosti na hiperprstene i istražujemo fazi re- 
ducibilnost u određenim tipovima generalnih hiperprstena.

Podgorica, 2022. Milica Kankaraš



Abstract

This thesis deals with the reducibility property in algebraic hypercompositional struc- 

tures. The concept of reducibility was introduced by Jantosciak, when he dehned certain 

equivalences in order to identify elements which have the same role with respect to the 

hyperoperation. He dehned the operational equivalence, inseparability and essential in- 

distinguishability in a hypergroup and called these relations fundamental. Besides, he 

gave a dehnion of a reduced hypergroup as a hypergroup where the equivalence class of 

any element with respect to the relation ” essential indistinguishability” is a singleton. 

Based on the relations dehned by Jantosciak, we introduce new equivalence relations 

on a crisp hypergroup endowed with a fuzzy set and call them the fuzzy operational 

equivalence, fuzzy inseparability and fuzzy essential indistinguishability, i.e., we extend 

the reducibility concept to the fuzzy case. We dehne a fuzzy reduced hypergroup as a 

hypergroup where every element has a singleton equivalence class with respect to the 

fuzzy essential indistinguishability. Further more, the extension can go to another di- 

rection, which leads to the study of the reducibility in fuzzy hyperstructures, which are 

hyperstructures endowed with fuzzy hyperoperations. The fuzzy reducibility strictly 

depends on the given fuzzy set, but in our thesis we will only consider the fuzzy set 

p dehned by Corsini and called grade fuzzy set. In the second part of the thesis, the 

concept of the reducibility is extended to general hyperrings. The equivalence relations 

are dehned with respect to the both, additive and multiplicative hyperoperations. Af- 

ter presenting some general properties and examples of reduced hyperrings, our study 

focuses on particular types of hyperrings. They are complete hyperrings, (H , R)— hy- 

perrings, A — hyperrings and the hyperring of formal series. The thesis ends with a 

conclusive part containing also some ideas of future works.
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Chapter 1

Preliminaries

This chapter gathers together the basic notions and results related to hypergroups and 
hyperrings. For a detailed overview we referee the readers to the fundamental books 
[13, 32].

1.1 Hypergroups

For a non-empty set H, we denote by V*{H) the family of all non-empty subsets of H. A 
binary hyperoperation, called also a hyperproduct, is an application o : V*(H)
and the pair ( H, o) is called a hypergroupoid. If hyperoperation o mapps to V(H),
where V(H) the family of all subsets of H (including the empty one), then pair (H, o) 
is called a partial hgpergroupoid. It is important to stress that in a hypergroupoid 
the hyperproduct x o ybetween two arbitrary elements x and in is a non-empty 
subset of H, while in classical algebraic structures, the result of a binary operation 
between two elements is just one element of the initial set (called the support set). If 
the associativity is also valid, i.e., (a o b) o c = a o (b o c), for all a,b,c e H, then the 
hypercompositional structure (H, o) is a semihypergroup that becomes a hypergroup 
when also the reproducibility property holds: for all e

The hyperoperation o is extended also to non-empty subsets A,B of H and for 
x e H, there is [32]

A o B =  [J  a o b A o x = A o {x } {x } o B.
aeA.beB

1
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So the associative property (ao o o o c)means that

[J uo c =  [J a
u£aob v£boc

If the hyperoperation o satisfies just the reproducibility, then ( , o) is called a quasi-
hypergroup [32].

A hypergroupoid ( H, o) which is both a semihypergroup and a quasihypergroup is 
called a hgpergroup [32].

For the representation of a certain finite hypergroup H we often use the Cayley table. 
The Cayley table describes the hyperoperation action on every pair of elements in H. 
In the following example, we represent the hypergroupoid (H, o) with the Cayley table 
and show that the given hypergroupoid is a hypergroup.

Exam ple 1.1. On the set H {a, b, c, d} define the hyperoperation o by the following
Cayley table:

o a b c d
a a a a, bca, bd
b a a a, bca, bd
c a, bca, bca, bcc, d
d a, bda, bdc, d a, bd

( l . D

Let us first check whether the reproduction axiom is valid, i.e., whether the hyperprod- 
uct of any element x with the set H gives the whole set H.
The hyperproduct a o His equal to [J a o x  =  a o a U a o t U f l o c U f l o r f  =

x&H
{a } U {a } U {a, 6, c} U {a, 6, d} =  {a, 6, c, d} = H. Due to the commutativity (the table is 
symmetrical about the main diagonal), the hyperproduct Ho a  is equal to which
means that aoH = Hoa = H. Similarly it can be proved that boH = coH = doH = H 
and H o b = H o c = H o d = H .

The verification of the associativity property sometimes can be very demanding, 
because in general, it requires n3 checks, where \H\ = n.
Let us show the identity (boc)od = bo(cod). Since boc = {a, , c}, then the hyperproduct 
(b o c) o d is equal to {a, b, c}  o d, which is further equal t o a o d u 6 o d U c o d  = H. 
Similarly, bo(cod) = bo{c,d} = bocUbod = H. All other checkings of the associativity 
identities can be done in a similar way. Since the hypergroupoid (H, o) satisfies both, 
the associativity and the reproducibility, then it is a hypergroup.

Rem ark 1.1. Notice that a hypergroup H such that = 1, for any x,y e is a
group, while every group is a hypergroup.
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Some well known examples of hypergroups are listed below.

Example 1.2. [32] Let (G, •) be a group, be a normal subgroup of G, and for all 
x,y € G, the hyperoperation is given with x o xyH. Then ( , o) is a hypergroup.

Example 1.3. [32] Let the hyperoperation ” o ” be defined on the set of real numbers 
as follows: xo x =  xfor all x e  R and x o yis the open interval between x and y. The
hyperstructure ( H, o) is a hypergroup.

Deflnition 1.1. [13] If H is anon-empty set and for allx,y holds thatxoy = H,
then the hypergroup (H, o) is called a total hypergroup.

Analogously to subgroups and semigroups in classical algebra theory, in hypercom- 
positional algebra we introduce subsemihypergroups and subhypergroups.

Deflnition 1.2. [13] A non-empty subset semihypergroup o) is called a
subsemihypergroup if it is a semihgpergroup. In other tuords, a non-empty set K of a 
semihypergroup (H, o) is a subsemihypergroup o C A non-empty subset L of 
a hgpergroup (H, o) is called a subhgpergroup if it is a hgpergroup.

Deflnition 1.3. [13] A subhgpergroup K of ahgpergroup , o) is said to be conjugable 
if for all x e H there exists ye Hsuch that o C

The set H itself is a subhypergroup of H. We call all other subhypergroups as proper 
subhypergroups.

Example 1.4. [35] If Z is the set of integers and the hyperproduct on the set Z x Z is 
defined as (a, b) o (c, d) = {(a, b + d.), (c, b + d)}, then the hyperstructure (Z x Z, o) is a 
hypergroup, while the hyperstructure (Z x { 0} ,o)  is a subhypergroup of

Deflnition 1.4. [13] Let (H, o) be a hypergroupoid. An element e is called a left identitg 
if for any a e H , a e e o a.Similarlg, an element e is called a nght identitg if for any
a e H,a e a o e. An element e is called an identitg (or umt) if it is both, a left and a 
nght identity, i.e., if for any a e H, a e a o e D e o a .

Deflnition 1.5. [13] Let (H, o)be a hgpergroup endoiued mth at least an identitg. An 
element ae H iscalled a left mverse of a if there exists an e e H such that
e e a o a. An element ae H iscalled a nght mverse of a if there exists an 
e e H such that ee ao a'.An element a' e H is called an inverse of a if it is both, a 
left and a nght mverse, i.e., there exists an identitg e such that o fi o

Deflnition 1.6. [13] A hgpergroup (H, o) is called a regular hgpergroup if it has at least 
one identitg and all elements from H have at least one inverse.
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The first construction of a homomorphism was given by Corsini in [6], 34 years after 
the notion of a hypergroup was introduced. Later, in 1991, Jantosciak gave the defini- 
tions for the various types of homomorphisms [41]. We will present some of important 
definitions of homomorphism which are widely used in the study of hyperstructures.

Deflnition 1.7. [32] Let (Hi ,o) and (H2 ,*) be tiuo hypergroupoids. A mapping 
H 1 H2 is  called

1.A homomorphism if for all x , y e Hf(x o C f(x) * f(y).

2. A good homomorphism if for all x , y e Hf(x o f(x) * f(y).

3. A very good homomorphism if it is good and for all have f(x/y
f(x)/f(y) and f(x \ y) = f(x) \ f(y) where x /y z o and
x \ y = [u e H : y e x o u}.

There are many classes of hypergroups in hypergroup theory. We will mention some 
of them, which are relevant for our research. One of the most important classes of 
hypergroups are join spaces. Join spaces are introduced in [56] by Prenowitz. They are 
particular type of hypergroups, used in Graph theory, Geometry, Binary relations and 
other areas. Jantosciak and Prenowitz [57, 58] have given an algebraic interpretation 
of linear, spherical and projective geometry using ”join” hyperoperation. In the linear 
geometry, the ”join” hyperoperation assigns to two distinct points a segment, in the 
projective geometry it assigns to them a line, while in the spherical geometry, the ”join” 
hyperoperation assigns to two distinct points a minor arc of great circle throught these 
points. Besides, join spaces can be used to characterize lattices, median algebras, graphs 
and so on.
Let a, b are elements from (H, o), and denote

a/b = {x e H : a e x o b}.

The set a/b is called the quotient of a and b or the extension of a from b [32].

Deflnition 1.8. [32] A commutative hypergroup is called a join space if for all
a,b,c,d from H, there is

a/bCc/d^  0 - > a o J n 6 o c  /  0

The particular type of join hypergroup having a scalar identity is called a canonical 
hypergroup. It was introduced by Krasner, who introduced them as an additive part 
of hyperrings and hyperfields. However, they were named after Mittas in [54], who has 
been later studied them in depth.
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Deflnition 1.9. [32] We say that (H,o) is a canonical hypergroup if

1. It is acommutative

2. It has a scalar identity (scalar umt) i.e., there exists e such that for all
x e H there is x oe  = e o x  = x.

3. Every element has a umque inverse, i.e., for all there exists a umque
x _1 e H, such that e e  x o x _1 fi x _1 o x.

4- It is reversible, vohich means that for any x , y , a H 2 holds

(a) if y e a o x, then there exists a mverse of a such that x e a

(b) if y e x o a, then there exists a' inverse of a such that

Remark 1.2. [32] The identity of a canonical hypergroup is unique.

Let ( H, +) be a canonical hypergroup and N be an arbitrary canonical subhyper- 
group of H and set H/N = {x + N, x eH}. Let us define the hyperoperation +' on 
H/N  as follows

(x + N) +' (y + N) = {t N\t

Proposition 1.1. [61] For every canonical hypergroup H, if N is an arbitrarg canonical 
subhgpergroup of it, then the hypergroup (H/N,+ ) is a canonical, too.

1.1.1 Corsini hypergroups

Let us present now a new class of hypergroups, called Corsini hypergroups. We will 
observe in depth the reducibility property for Corsini hypergroups in the third chapter. 
In the first studies concerning the relationship between hypergroups and hypergraphs, 
Corsini defined the following hypergroupoid.

Deflnition 1.10. [29] Let F =  ( / / ;  {^4;};) be a hypergraph, i.e., for any i, Â  e V(H) \ 
0 ; U i^i =  H for any x e H. Set E(x) = \JxeAjAi. The hypergroupoid r = 
tuhere the hyperoperation o is defined by:

\/(x, y) e H2, x o y = E(x) U E(y)

is called a hgpergraph hypergroupoid.

Deflnition 1.11. [15] The hypergroupoid Hr satisftes for each (x,y) e H2, the follounng 
conditions:
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1. X o y =  x o y o y ,

2. x e x o x,

3. y e x o x ifand only ifx e yo y.

Theorem 1.1. [15] A hypergroupoid (H, o) satisfying the conditions in Defimtion 1.11 
is a hypergroup if and only if also the follomng condition is vahd:

V(a,c) e H2 c o c o c \ c o c C a o a o a .

This hypergroup was studied also in [2], where the authors named it ” Corsini hy- 
pergroup” and investigated also its properties connected with the Cartesian product. 
Here we recall one result, that we will need in our research.

Theorem 1.2. [2] Let (H,oj) and (H,o2) be two Corsim hgpergroups. Then the direct
product of hgpergroups (H x H,oj x o2) is a Corsini hypergroup if and only if oj) 
or (H,o2) (or both) is a total hypergroup.

Note that, for two given hypergroups defined on the same support set H, the hyper- 
operation ® = oxx o2 is defined as (xi,x2) ® =  (afi °i l/i, 2̂ ° 21/2), , ^2, ?/i, 1/2 €
H. The structure (H x H, ®) is called the direct product of hgpergroups.

Let us define a particular type of Corsini hypergroup, studied for its important 
properties in the theory of automata and languages [52], which is called B-hypergroup 
by G. Massouros. The name of this hypergroup was given due to the binary result 
that the hyperoperation gives. It was also investigated in connection with fortified join 
spaces [51] or breakable semihypergroups [40].

Deflnition 1.12. [52] Let H be any non-empty set. For any (x,y) e H 2, define * as 
follows

x * y  = {x,y}.

Then the hypergroup ( / / ,* )  is called a B-hypergroup.

Proposition 1.2. [2] Any B-hypergroup (H, *) is a Corsim hgpergroup.

I . 1.2 Fundamental relations in hypergroups

In the following we introduce one of the key concepts in the hypercompositional algebra. 
We define fundamental relations, which play the role of connection between the classical 
and the hypercompositional algebra.
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As we have already explained in the introductory part, the algebraic hypergroups are 
the most natural generalization of the classical groups: the binary operation of groups 
is extended to a hyperoperation, where the composition of two elements of a given set 
gives a non-empty subset of it. The first example of such hyperoperation was given 
by Marty [49], when he noticed that if Gis a group, and H is its subgroup, then the 
quotient G/His a hypergroup. The quotient forms a group only in the case when 
H is a normal subgroup. In classical algebra, quotient sets are important because they 
provide a tool for obtaining a stricter structure from the initial one. In the hyperalgebra, 
quotients sets are very important because they connect classical algebraic structures 
with algebraic hyperstructures. Connection between semihypergroups (hypergroups) 
and semigroups (groups) can be established via specific equivalence relations. These 
relations play a role analogous to the congruences in the classical algebra. If we start 
with a (semi) hypergroup, using this equivalence relation and a corresponding operation 
we get a (semi) group structure on the quotient set. To be more precize, equivalence 
relation defined on a hyperstructure such that the quotient set (hyperstructure modulo 
this equivalence relation ) is a classical structure having the same behaviour, is called 
a fundamental relation. Besides, the fundamental relation is the smallest equivalence 
relation such that the described quotient set is a classical structure. The corresponding 
quotient sets are called fundamental structures. Using fundamental relations, algebraic 
hyperstructures can use a plenty of tools used in a classical algebra.
In order to give a strict definition for these relation, let us first define a strongly regular 
relation.

Deflnition 1.13. [13] Let (H,o) be a hypergroupoid, and p be an equivalence 
relation on H. Then p is regular to the left if:

apb =t- (Vri e H,\/x e u o a,3y e u o b : xpy
and (1.2)

Vri e H,\/y e uo b, o x py)

The relation p is regular to the nght if:

apb =t- (Vu e H,\/x e a o u,3y e b o u : xpy

and (1.3)

\/u e H,\/y e b o u, 3xe o x

The relation p is regular if it is regular to the left and to the nght.
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Deflnition 1.14. [13] Let (H,o) be a hypergroupoid, a,b e H and p be an equivalence 
relation on H. Then p is strongly regular to the left if:

apb =t- \hi e H,\/x e u o a,\/y e u o b : xpy.

The relation p is stronglg regular to the nght if:

apb =$- \/u e H,\/x e a o u, \/y e b o u : xpy.

The relation p is stronglg regular if it is stronglg regular to the left and to the nght.

Given a semihypergroup H and a regular relation R, the quotient HjR is a semi- 
hypergroup. Besides, with a properly defined hyperoperation on the structure H/ R, if 
the relation Ris a strongly regular relation, then the quotient H/R is a semigroup.

Theorem  1.3. [32] Let (H,o) be a semihgpergroup and R be an equivalence relation 
on H.

1. If Ris regular, then the quotient H/R is a semihgpergroup mth respect to the 
follomng hgperoperation x ® y = [z : z & xo y}.

2. If the above hgperoperation is well defined on H/R, then the relation R is regular.

C orollary 1.1. [13] If (H,o) is a hgpergroup and R is an equivalence relation on H, 
then R is regular if and only if (H/R,®) is a hypergroup.

The following theorem states that a semihypergroup H factorized by a strongly 
regular relation Ris a semigroup.

Theorem  1.4. [13] Let (H, o)be a semihgpergroup and R be an equivalence relation 
on H.

1. If Ris strongly regular, then the quotient H/R is a semigroup mth respect to the 
folloimngoperation x ® y = {ž : z e x o y].

2. If the above operation is well defined on H/R, then the relation R is strongly 
regular.

C orollary 1.2. [32] If (H,o) is a hgpergroup and R is an equivalence relation on H, 
then R is strongly regular if and only if (H/R,®) is a group.

Strictly speaking, the fundamental relation is the smallest strongly regular equiva- 
lence relation, such that the corresponding hyperstructure factorized by this relation
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becomes a classical structure. Until now, for semi (hypergroups), two fundamental re- 
lations are defmed, by Koskas [46] and Preni [39]. Later, this concept has been studied 
by Corsini, Vougiouklis, Davvaz, Loreanu-Fotea, Migliorato and many others. In 1970, 
Koskas connected classical structures with hyperstructures using a relation He no- 
ticed a similar behaviour of elements belonging to the same hyperproducts and using 
that, he defined a relation (5 which was reflexive and symmetric. After that, he denoted 
by p* its transitive closure in order to define equivalence relation and to partition the 
quotient set into equivalence classes.

In the following we give the definition for the (5 relation.

Deflnition 1.15. [46] Let (H,o) be a semihypergroup and n >  l ,n  N. We define the 
relation as folloivs

n
x/3nyif there exist ai,a2, - - - ,ansuch that { x , y }  C JJJi*

i— 1

and let
fi = Un>ifin, luhere fii = {(x,x)\x e H}

is the diagonal relation on H.

The relation (5 is reflexive and symmetric [46]. We will denote with j5* the transitive 
closure of (3.

Theorem  1.5. [46] j3* is the smallest stronglg regular equivalence relation on H mth 
respect to the inclusion.

Theorem  1.6 . [46] Let (H, o)be a semihgpergroup (hgpergroup), then the relation (3* 
is the smallest eguivalence relation such that the guotient /  is a semigroup (group).

As we have already mentioned, the relation (3* is called the fundamental relation on 
H and the quotient H /(3* is called the fundamental semigroup (group). It is important 
to emphasize that in hypergroups, the fundamental relation (3 coincides with the (3* 
relation [32]. Thus, the quotient set obtained by factorizing a hypergroup by the 
equivalence [3is a group.

Another fundamental relation, denoted 7, was defined on a semihypergroup by Freni. 
He denoted by 7* its transitive closure, and he set 7 = [Jn>1 where 71 is the diagonal 
relation and for, n >l , 7n is the relation defined as follows [39]:

n n

xyny<=> 3(z\,z2, ■ , zn) e Hn : 38 e Sn : x e n « > v * n  Z6(i)-
i— 1 i— 1
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7 is symmetric and reflexive.

Theorem  1.7. [39] Let H be asemihypergroup. The relation 7* is the smallest strongly 
regular equivalence relation such that the quotient '7* is a commutative semigroup.

1.1.3 Complete hypergroups

Using fundamental relations, we define wide and very important class of hypergroups, 
called complete hypergroups.

The definition of a complete hypergroup is based on the notion of complete 
introduced by Koskas in [46]. The complete part is used for the purpose of character- 
ization of the equivalence class of an element under the relation $*. More precizely, a 
non-empty set Aof a semihypergroup (H, o) is called a complete part of , if for any 
natural number n and any elements a\,0,2 , • • • , anin H, the following implication holds
[46]:

n n

A n  a i  0̂ =r* C A.
i— 1 i— 1

We may say, as it was mentioned in the overview paper written by Antampoufis et 
al [3], that a complete part A absorbs all hyperproducts of the elements of H having 
non-empty intersection with A. The intersection of all complete parts of H containing 
the subset A is called the complete closure of A in and denoted by C (A) [46].

The complete parts were later studied by Corsini [8] and Sureau [65]. De Salvo stud- 
ied some of their properties in [37]. Migliorato also introduced a notion of a complete 
part, which is the generalization of complete parts [53].

For a given semihypergroup H and a strongly regular relation R on H, the equiva- 
lence class of any element x from His a complete part of H [32].

Theorem  1.8. [32] Let (H,o) be a semihgpergroup. The follomng conditions are equiv- 
alent:

1. Mx, ye H\fa e  x oy C(a) =  x o y.

2. Vx, ye HC(x oy) = X O y.

Deflnition 1.16. [32] A semihgpergroup is complete if it satisftes one of the above 
equwalent conditions. A hgpergroup is complete if it is a complete semihgpergroup.

Let us define the notion of the heart of hypergroup, which is directly connected with 
fundamental relations.
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Deflnition 1.17. [32] Let (H,o) be a hypergroup and consider the canomcal projection 
ip>H : H —>H/(3*. The heart of the hgpergroup H is the set u>h =  {x G H\ipH(x) 1},
tuhere 1 is the identitg of the group (H/fi*,®).

As we explained before, j5* is the smallest strongly regular equivalence relation such 
that the quotient H/ j5* represents a group and the operation ® is given with

(5*(x)® j5*(y) = /5*(z), ze x o y ,with x,y €

From the above definition, it is clear that the heart contains all elements x for which 
the equivalence class (5*(x) is the identity in H/(5*.

The heart of a hypergroup was studied in depth by Loreanu in her Phd thesis, and 
together with Corsini in [18].

Theorem  1.9. [32] The heart wh is a complete part of H.

Moreover, the heart of a hypergroup is the smallest complete part of hypergroup H, 
which is also a subhypergroup of H[32].

Since it is satisfied that (5*(x) = u>h °x = xo , we may say that the heart gives
us an information about the partition set corresponding to the element x under the 
relation (5*. The heart uh of a complete hypergroup (H, o) has an interesting property: 
it contains all identities of H.

Theorem  1.10. [13] Let (H,o) be a complete hgpergroup.

1. The heart u>h is the set of tiuo-sided identities of H .

2. H is regular and reversible.

As we can see in [13, 19, 30], in practice, it is more convinient to use the following 
characterization of the complete hypergroups.

Theorem  1.11. [13] Any complete hgpergroup may be constructed as the umon H = 
[J  Ag of its subsets, vohere

geG

1) ( G,•) is agroup.

2) The family {Ag, \g e G} is apartition of G, i.e., for any (g\,gf) € G2, g\ ^ ĝ , 
there is Agi fi Ag2 =  0.
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3) If (a, b) G Agi x Ag2, then o v4gig2.

Above theorem clearly shows that any group is a complete hypergroup, too. How- 
ever, in the thesis, we will consider only proper complete hypergroups, so complete 
hypergroups that are not groups.

Example 1.5. [19] Let (H,o) be the hypergroup represented by the follounng commu- 
tative Cayley table:

0 e a\ a2 a3
e e a\,a2,az ai,a2,a3 ai,a2,a3
a\ e e e
a2 e e
as e

( 1. 4)

The hgpergroup (H, o) is complete, ivhere the group G (Z2, +), and the partition set 
contains A0 = {e}, Ai =  {ai, 0,2,03}.It is easy to see that H is the umon of sets A0 and
Ai, vohich are disjoint. Obviouslg, e o e = A0+o = A0 = e. Further, o A0+i = A\, 
since e e A0,ai e Ai, for 1 e {1,2,3}. Due to the commutatimty, a ,o e  =  A Further, 
because â  e Ai} for indices 1 e {1,2,3}, then o o a* A1+1 = Hence,
all conditions in Theorem 1.11 are fulfilled.

The complete hypergroups have been studied for their general properties [37], or in 
connection with their fuzzy grade [19, 26], or for their commutativity degree [62].

1.2 Hyperrings

Hyperrings are hypercompositional structures endowed with two (hyper)operations, 
and denoted additively and the other one multiplicatively (but not both operations), 
with similar properties of the operations on rings. There are different types of hyperring 
structures depending on how the addition and multiplication are defined, i.e., if they are 
defined as operations or hyperoperations. There are different concept of the hyperring 
structures in the hyperstructure theory. The hyperrings can be defined with the help of 
two hyperoperations, or with the one hyperoperation and the one operation. We differ 
between three types of hyperrings: additive, multiplicative and general hyperring. The 
additive hyperring is a hyperstructure endowed with an additive hyperoperation and 
multiplicative operation, where the multiplicative operation is distributive with respect 
to the additive hyperoperation. The most known additive hyperring was introduced by
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Krasner in 1983 [47], and it was named after the author. Later, Krasner also studied 
quotient hyperrings and hyperfields. This type of hyperring has been widely studied 
by many authors, as Massouros, Loreanu-Fotea, Davvaz, Mittas, Vougiouklis, Spartalis 
and others. The other two types of hyperrings are multiplicative and general hyperring.

Deflnition 1.18. [47] A Krasner hypernng is an algebraic structure (R, + , •) such that 
the additive part (R,+) is a canonical hgpergroup, the multiphcative part (/?,-) is a 
semigroup havmg zero as a bilaterallg absorbing element, i.e., x ■ 0 = 0 ■ x = 0 for all 
x e H, and the multiphcation ”• ” is distnbutive mth respect to the hgperoperation ” +

A Krasner hyperring is commutative if (R, •) is a commutative semigroup. A Krasner 
hyperring is a hyperring with unit if the semigroup (R, ■) has a unit [47].

Exam ple 1.6 . [4] On the set R =  {0 ,a ,6 ,c }, define an hyperoperation + and a mul- 
tiplication • by the following tables:

+ 0 a b c ' 0 a b C

0 0 a b c 0 0 0 0 0
a a 0, b a, c b a 0 a b C

b b a, c 0, b a b 0 b b 0
c c b a 0 c 0 c 0 C

The structure (R, +, •) is a Krasner hyperring.

Exam ple 1.7. [32] If (H,<,+)  is a totally ordered group and the hyperaddition is 
given with

x© x = {te H\t < x }, e H,

x© y = {max{x,y}},\/x,y e

then the structure (H, ©) defines a canonical hypergroup. If (H, +, •) is a totally ordered 
ring, then (H, ©, •) is a Krasner hyperring.

Deflnition 1.19. [34] A commutative Krasner hgpernng uiith unit is called a Krasner 
hgperfield if R\{0 } is a group.

Exam ple 1.8 . [5] On the set F =  { 0 ,1} define an additive hyperoperation ” + ” and a 
multiplicative operation ” •” by the following tables:

+ 0 1 * 0 1

0 0 1 0 0 0

i 1 0,1 1 0 1
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The hyperstructure (F, + , •) is a Krasner hyperfield.

An important example of a Krasner hyperfield can be found in [47], where the author 
presented the way to construct Krasner hyperfields using a field.

Exam ple 1.9. [47] Let (F, + ,-) be a field, be a subgroup of (F \ {0 },-) and let
H =  F/G = {aG\a E F} where the hyperaddition and the multiplication are given 
with the formulas:

aG © bG = {cG\cE aG + }, 

aG © bG

Then the hyperstructure (H, ffi, ©) is a hyperfield.

Definition 1.20. [32] A subhyperring of a Krasner hypernng , +, •) is a non-empty 
subset A of R vohich forms a Krasner hgperring.

Definition 1.21. [32] Let ( /? ,+ ,-)  be a hgpernng, and subhgpernng of R. We
say that A is aleft (nght) hgpendeal of R if r ■ E A E for all E mth
a E A. A is a hypendeal of R if it is both, left and nght hgpendeal.

In practice, sometimes it is more suitable to use the following characterization.

Lem m a 1.1. [32] Let A be anon-empty set of the hgpernng , +, •). A left (right)
hypendeal of the hypernng if and only if

1. For any a,bE A,it holds that a — bE A.

2. If aE A,rE Rthen r ■ aE A (a- rE A).

Exam ple 1.10. [5] Let (/? ,+ ,-)  be the hyperring from Example 1.6. The hyperideals 
of the hyperring R are the sets: {0 }, {0, 6}, {0, c}, {0, b, c} and R.

The another type of hyperring, equipped with an additive operation and a multi- 
plicative hyperoperation was introduced by R. Rota in [59]. This type of hyperring is 
called a multiplicative hyperring.
More exactly, the structure ( R, + , •) is a multiphcative hypernng if: (R, +) is an Abelian 
group, (/?,-) is a semihypergroup, and the operation • is weakly distributive with re- 
spect to the hyperoperation +, i.e., a(b + c) C + and (b + c)a C + for all 
a, b, cE R [5].
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Example 1.11. [32] Let Kbe a field and Vbe a vector space over K . Let < be
a subspace generated by the set {a, 6}, where a,b £ V. Then, if we define for all

a,b e V, a o

Then the hyperstructure ( V, + , o) is a multiplicative hyperring.

Example 1.12. [32] Let (/?,+,•) be a ring and be an ideal of it. If we define the 
hyperoperation on R as

Va,6 e / ?  a-kb = ab + I,

then the hyperstructure (R, + ,* ) is a multiplicative hyperring.

Deflnition 1.22. [32] Let ( R, +, •) be a multiplicative hypernng and non-empty
subset of R. We say that H  is asubhyperring of (R, +, •) if (H, +, •) is a multiphcative 
hypernng itself.

Similarly to the Krasner hyperring, a non-empty subset of a multiplicative hyper- 
ring Ris a left (right) hgpendeal if for all a,be there is e and if a e e
it implies that r • ae A(a • r e A). If the hyperideal is both, left and right, it is called 
a hgpendeal [32].

Example 1.13. [27] Let (Z ^ ,+ ,o ) be a multiplicative hyperring where = Z, and 
the hypermultiplication is given with x o y = {x ■ a ■ y\a e ^4}, where v4 = {2, 4}. Then 
the set 12Z = {12n : n e Z } is a hyperideal of the hyperring (Z^, +, o).

The widest class of hyperrings is the class of general hyperrings. These are hyper- 
structures endowed with two hyperoperations, connected by the distributibivity prop- 
erty. The general hyperring was firstly introduced by Corsini [7], who used it for 
defining and studied feeble hypermodules. Many authors gave a definition of a general 
hyperring, but the most general one was by Spartalis in 1989 [63]. In order to define 
general hyperrings let us first define the hyperringoid.

Deflnition 1.23. [52] A hgpercompositional structure (R, ©, ©) is called a hypernngoid

if

1. (/?,© ) is a hgpergroup.

2. (R, ©) is a semigroup.

3. The operation ”© ” distnbutes on both sides over the hyperoperation ”© .”
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This algebraic hyperstructure was first introduced by Massouros and Mittas [52] in 
the study on languages and automata. If we request that both addition and multipli- 
cation are hyperoperations, then the hyperringoid becomes a general hyperring.

Deflnition 1.24. [67] A tnple (/? ,© ,© ) is a general hgpernng if:

1. (/?,© ) is a hgpergroup.

2. (R, ©) is a semihgpergroup.

3. The multiphcation © is distnbutive urith respect to the addition ffi, i.e., for all
a,b,c eR, a © (6 ffi c) =  a © 6 f f ia © c  and (a © 6) © c  = a © c f f i6 © c.

Deflnition 1.25. [S2J A commutative general hgpernng (R, ffi, ©) is called a hgperfield 
if R* 0, tuhere R* = R\{u},u is the heart of the additive part of a hgpernng and 
(R*,Q) is a hgpergroup.

Example 1.14. [34] The hyperstructure (/? ,© ,© ), where R =  {a,b,c,d} is a hyper- 
field.

Q a 6 c d
a a, 6 a. 6 a . 6 a, 6
6 a, 6 a. 6 a. 6 a, 6
c a, 6 a. 6 c, d c, d
d a, 6 a. 6 c, d c, d

ffi a 6 c d
a a a,.6 c, d c, d
6 a, 6 a,.6 c, d c, d
c c, d C, d a,.6 a. 6
d c, d C, d a,.6 a, 6

Deflnition 1.26. [32] Let (/? ,© ,© ) be a general hgpernng and let K be a non-empty 
subset of it. We say that K is a subhypernng of R if it satisfies the follomng conditions:

1. (K,@) is a subhypergroup of (/?,© ).

2. (K,Q)is a subsemihgpergroup of (/?,© ).

Deflnition 1.27. [32]Let (/? ,© ,© ) be a general hgpernng and let non-empty
subset of it. We say that I is aleft (nght) hgpendeal of R, if it satisfies the follomng 
conditions:

1. ( /, ffi) is a subhypergroup of (/?,© ).

2.For all x e I , a e R, a Q  x C. I(x© aC I)

I is a hgpendeal if it is a left and nght hypendeal.



CHAPTER 1. PR 17

Every hyperring has two trivial hyperideals, the heart of an additive part of a hy- 
perring u and a hyperring R.

Exam ple 1.15. Notice that the subset {a, 6} is a hyperideal of the hyperfield presented 
in Example 1.14.

Deflnition 1.28. [32] Let Ri and R2 be tiuo general hgpernngs. A mapping from 
( /? ! ,+ ,-)  to ( R2, ©, ©) is said to be a good (strong) homomorphism if for all e

1. (p(a + 6) =  (p(a)© <j>(b).

2. (j>(a ■ b) = (j>(a) © (j>(b).

3. (j)(0) = 0.

The Hv— structures were introduced by Vougiouklis at the 4th AHA Congress in 
1990 [69], as hypercompositional structures with weak associative hyperoperations.

Deflnition 1.29. [32] The hgperstructure (//,•) is an Hv-semigroup fi
z for all x,y,z e H. If also the reproduction axiom is vahd, i.e., a - H = H ■ a = H, 
for all a e H then (H, ■) is an Hv—group.

Deflnition 1.30. [32] A multi-valued system (/? ,© ,© ) is an Hv—nng if:

1. (/?,© ) is an Hv— group.

2. (/?,© ) is an Hv— semigroup.

3. The multiphcation © weakly distnbutes with respect to the addition ffi, i.e., for all
a, b, ce R, (fl© (6ffic ))n (a © 6ffifl©c) 0 and ((flffi6)ffic)n(flfficffi6©c) 0.

It is important to recall here that the quotient of a group with respect to any of its 
subgroups is a hypergroup, while the quotient of a group by any equivalence relation 
gives birth to an Hv—group [50]. A recently published overview of the theory of weak- 
hyperstructures is covered in [70].

In the following we will recall the construction of three types of hyperrings, that we 
will study in the fourth chapter. The first one leads to an Hv— ring obtained from 
a ring. This structure was principally studied by Spartalis and Vougiouklis [64], in 
connection with homomorphisms and numeration.

Let (R, + , •) be a ring and P\ and P2 be non-empty subsets of R. The hyperopera- 
tions:
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xP£y = x + y + P\ and xP£y = x • y • P2for all x,y e R are called the P— hyperoperations
[68]. Let Z(R) be the center of the multiplicative group (R, •).

Theorem 1.12. [64] Let (R, +, •) be a nng and P\ and P2 be non-empty subsets of R.
If0 € P\ and Z(R) n +2 7̂  0, then (R, P\, Pf) is an Hv— nng, called the Hv — nng 
mth the P— hyperoperations.

We finish this section by recalling the construction of the hyperring of the formal 
series [31, 43]. Based on this, the structure of the set of polynomials over hyperring 
was studied.

Let (R, + , •) be a general commutative hyperring.

[31] A formal power series with coefficients in R is an infinite sequence (a0, Oi, +2, • • •, •
of elements in R. The set of all such power series is denoted by /?[[x]]. We say that 
two power series (a0, a\, â , ■ ■ ■ , an, ...) and (60, 61, 62, . . . ,  are equal if and only
if ai =  bi for all indices i.

Let define on R[[x}} the addition by

(a0, a\, â , ■ ■ ■ , an, . . .)  © (60, 61, 62, • • •, .) =

{(c0, C\, C2, ■ ■ ■ , cn, ...), Ck£ a& + bk}

and the multiplication by

(a0, a\, â , ■ ■ ■, an, . . . )  © (60, 61, 62, . . . ,  ) =

{(© , C\, C2, ■ ■ ■, cn, ...), Ck£ ^  ai • bj}
i-\-j=k

The structure (/?[[x]], ffi, ©) is a general hyperring. It is worth to recall that the 
set of the polynomials R[x] with coefficients in is a left superring, with the same 
hyperoperations ffi and © defined above. This means that (/?[x],ffi) is a canonical 
hypergroup, (/?[x],ffi) is a semihypergroup with 0 a bilaterally absorbing element and 
the multiplication is weakly distributive on the left side with respect to the addition, 
i.e., /  © (g ffi h)C /  © g ffi /  © h, for / ,  g, h e
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1.2.1 Fundamental relations in hyperrings

Similar as for hypergroups, Vougiouklis intoduced the relation, which is the small- 
est equivalence relation such that the quotient set (the hyperring modulo the relation) 
is a ring, and he was the first one who named such a relation fundamental. He also 
investigated its relationship with the /3* — relation.

Deflnition 1.31. [32] Let (/?,+,•) be a general semihyperring (hypernng). We define 
a as follovus:

aab iff {a,b} Cu vohere u is afinite sum of finite products of elements from R.

This is a reflexive and symmetric relation, but generally not transitive [32]. The 
transitive closure a* of the relation a is called the fundamental relation on R.

Let us denote by U the set of all the finite sums of products of elements of R, and 
with a*(a) the fundamental class of a. Then [32]

aab iff 3z\, . . . ,  zn+1e Rwith z\=a,zn+\ = b and

U\, U2 , ■ ■ ■, un€ Usuch that {ẑ , ZC for i = l , . . . , n .

T heorem  1.13. [32] Let (/?,+,•) be a hypernng. Then the relation a* is the smallest 
equivalence relation defined on R such that R/a* is a nng. The quotient R/a* is called 
the fundamental nng.

1.3 Fuzzy sets and connections with hyperstruc- 
tures

Fuzzy sets have been introduced by L.A. Zadeh in 1965 [71] and they represent the ex- 
tension of the classical notion of a set. Any fuzzy set is characterized by a membership 
function which assigns to every element a degree of membership. In the classical set 
theory an element belongs or does not belong to the set, which means that the mem- 
bership function is a binary function. More exactly, it is the characteristic function 
of the given set, so it maps every element to 0 or 1, depending if the element doesn’t 
belong or belongs to the set. In the fuzzy set theory, the membership function maps 
every element to a number from the interval [0, 1].
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Deflnition 1.32. [32] Let X be aset. A fuzzy subset A of X is charactenzed by a 
membership function (ia : X —* [0,1] ivhich associates mth each point x e X its grade 
or degree of membership ha(x) € [0, 1].

Exam ple 1.16. [38] On the set X  of real numbers, consider one initial point a and one 
final point c, while b represents one intermediate point, i.e., a The membership
function ha(x) is defined as follows:

0, if x < a

L a (x )
x —a 
b—a 5
c —x 
c—b 5

if a < x < b 

i f b < x < c  
if x > c

(1.5)

The membership function can be represented as m Figure 1.1. Because its tnangular 
form, the fuzzy set ( X , ij,a ( x ) )  is knoivn as the tnangular fuzzy number.

Figure 1.1: Triangular fuzzy number

Exam ple 1.17. On the set X  =  N, let A =  ” the set of natural numbers closed to 10” . 
This fuzzy set can be represented by its membership function > [0,1], tuhere
H a ( x ) = 1 — , which gives:
^ ( 10) =  1,/j,a(9 ) =  P a ( 11) = 0.9, ha(7) =  Ha( 12) =  0.8 and so on.

Deflnition 1.33. [29] Let A,B be fuzzy subsets of X. Define the follounng operations: 
A C B<=> ha(x) < hb(x), G X.
A = B <=> ha(x) =  ias(x)yx G X.
C =  A(J B <=> pLc(x) =  max{nA(x),HB(x)},G X.
C =  A fl B <=> pLc(x) =  min{/aA(x), /aB(x)},Vx G X.
Pac(x) =  1 -  Pa (x) ,\fxG X.

The connections between hyperstructures and fuzzy sets can be approached in three 
ways. First, we can define crisp hyperoperations trought fuzzy sets, as it was done by 
Corsini in [14]. The second approach are fuzzy hyperalgebras, which can be considered
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as the extensions of the concept of fuzzy algebraic structures. For example, let the 
hypergroup ( H , o) be a crisp hypergroup, and g be a fuzzy subset on it. We say that 
the fuzzy set fi is a fuzzy subhypergroup of ( , o) if every level set of the fuzzy set
is a subhypergroup of (H,o) [29]. Recall that if is a fuzzy subset of a set H, then 
the levelset of fi, noted with \it defines as: fit =  { i 6 H\fi(x) >  where t belongs to
[0,1]. In [28], where Davvaz introduced the concept of fuzzy subhypergroups, he also 
introduced the concept of the fuzzy Hv—subgroup of an Hv—group.

The third approach refers to fuzzy hypergroups, such that fuzzy hyperoperation 
assigns to any two elements a fuzzy set. They were studied by Corsini, Zahedi, Davvaz 
and many others. Here, the fuzzy hyperoperation associates to every pair of elements 
a fuzzy set, instead of the non-empty subset.

1.3.1 Construction of join spaces using fuzzy sets

Let us explain in more detail the first approach involving the very important connection 
between fuzzy sets and hyperstructures given by Corsini in [14]. With any fuzzy subset 
defined on a non-empty set H, he associates a join spaces.

Theorem  1.14. [14] Let fi: H -¥[0,1] be afuzzy subset of H, ivhere nonempty
set. Defimng

x o y = { z e H :  fi(x)A fi(y < V (1.6)

The hgpergroup (H, o) is a jom space.

Conversely, Corsini defined a fuzzy subset associated with a hypergroupoid (H, o) 
as follows [16]:

P(u)
A(u) 
q(u) ’

where A(u) =  £2 prvT)Q(w) = {(xiV)€ =  |Q(ri)|. For
C,y)eQ(u)

Q(u) =  0, by default we take y(u) =  0. We can interpret as the average of the 
reciprocals of the sizes of the hyperproducts o containing u [29]. By associating a 
fuzzy set fi to the hypergroupoid as in formula 1.6, we obtain the join space oj). 
Using formula 1.6 once again, from (lH,ox) we get the associated join space o2)
and obtain a new membership function fl̂ . By this procedure we get a sequence of join 
spaces ((lH,oi),'fn)i>\associated with H.
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The length of the sequence of join spaces associated with i.e., the number of 
non-isomorphic join spaces in sequence is called the fuzzy grade of the hypergroupoid 
H , and the fuzzy set jl is called the grade fuzzy set [29].

Deflnition 1.34. [13] A hypergroupoid H has the fuzzy grade G N\0, and lurite 
f.g.(H) = m iffor any i,0 < i < m,the jom spaces lH and 1+1H associated mth H
are not isomorphic (tuhere °H = H) and for any s,s > m,s H is isomorphic mth mH.

Let us show the above described procedure for a concrete hypergroup and calculate 
its fuzzy grade.

Exam ple 1.18. Let the hypergroupoid H = {a,b,c} be given with the following table:

o a b c
a a, b b b, c
b a a, b b, c
c a, c b b

The values of the elements a,b, c through the grade fuzzy set ft are:

fi(a)
1
2 '

Let us now construct a new join space.
The hyperproduct ao bis equal to {zG A < < V
is further equal to {z G H :§ < jl f }  =  {a,b}. Similarly, bo c
ft(b) A ft(c)< ft(z)< ft(b)V ft(c)} = {z G < < f } =  {a, b, c} =
If we apply the same procedure for all other hyperproducts it gives to us 
space represented by the table

°i a b c
a a a, b a, c
b a, b b H
c a, c H c

n(b)}, which 
- {z e H : 

H.
the first join

(1.8)

According to the definion of a join space, if fl 0 then o fl 0 for all
elements a,b,c,d G H. Indeed, a/b contains all elements G such that a belongs to 
x o b, giving a/b =  {a, c}. On the other side, a/c contains elements G G
which is equal to {a, b}, i.e. a/bDb/c =  {a }. If we calculate aocfl6oc we get {a,
{a ,c }, with {a ,c } 0 which proves that the above condition is satisfied. Analogously



CHAPTER 1. PR 23

we show that the condition is satisfied for all other combination of elements, concluding 
that the obtained structure represents the join space.

Now, we calculate using formula 1.6

M a )  5 ,? i(6) = 11,Pi(c) =  -^

and the second associated join space is represented by the table:

°2 a b c
a a H a, c
b H b b, c
c a, c b,c c

From here, we get g
P(a) Mc)  =  77-10

It is clear now that the associated join space has the table:

° 3 a b c
a H H H
b H H H
c H H H

(1.9)

( 1. 10)

Easily, one notices that any associated join space sH,s > 4 is the same as 3H, so the 
fuzzy grade of the given hypergroup is 3, because the number of non-isomorphic join 
spaces associated with H is 3.

Let us now define a fuzzy hyperstructure, i.e., the hyperstructure endowed with a 
fuzzy hyperoperation. In [60], Sen and Ameri gave the definition of a fuzzy semihyper- 
group.

Deflnition 1.35. [60] Let S be a non-empty set. A fuzzy hyperoperation on S is a 
mapping o : Sx S —> F(S), tuhere F(S) is the set of all fuzzy subsets of S. The
structure (S, o) is called, a fuzzy hypergroupoid.

Theorem  1.15. [60] A fuzzy hypergroupoid (S,o) is called a fuzzy hypersemigroup if 
for all a,b,ce S, (ao b)o c = ao (bo c) tuhere for any fuzzy subset there is

(a o p,)(r)
Vtes((aot)(r) A/i(t)),

<
0, otheriuise

if
( 1.11)
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Ut°a)(r) ■
{vtesiRit) A(toa)(r), 

I 0, othermse
( 1. 12)

for all r S.

Definition 1.36. [60] A fuzzy hypersemigroup o) is called, a fuzzy hypergroup if 
x o S =  S o x =  \sifor all x in S, ivhere \s rs the charactenstic function of the set 
S, i.e.,

1 ,if € S
Xs(x) -

0, if x S.
(1.13)

Exam ple 1.19. [60] Let S =  {a,b} and define the fuzzy hyperoperation as:
(aoa)(a) =  0.1, (aoa)(b) =  0.2, (aob)(a) =  0.2, (aob)(b) =  0.2, (boa)(a) =  0.3, (boa)(b) =
0.2, (a o b)(b) =  0.2, (6 o b)(a) =  0.7, (6 o &)(&) =  0.8.

Let us check whether the hyperproduct (a o a is equal to 

Here, ((a o a) o a)(r) =  Vtes((a o a)(t) A ( a)(r)) =

((a o a)(a) A (a oa)(r)) V ((a o a)(b) A (& o a)(r)).

This gives that ((a o a) o a) (a) =  0.1 V0.2 =  0.2, while ((a o a) o a) (&) =  0.1 V0.2 =  0.2. 
Similarly, (a o (a o a)) (r) =  Vfes ( (a  o t)(r) A (a o a)(t)) =

((a o a)(r) A (a o a)(a)) V ((a o b)(r) A (a o a)(&)).

At the same way we conclude that (a o (a oa)) (a) =  0.2 and (a o (a o a)) (&) =  0.2, 
which finally proves that (a o a) o ais equal to The all other identities can 
be proved in the similar way. The structure (S o) is a fuzzy hypersemigroup.



Chapter 2

Reducibility in hypergroups

This chapter deals with the reducibility property in hypergroups. We introduce the 
concept of the reducibility and examine the reducibility in certain types of hypergroups.

2.1 Reducibility in hypergroups

The concept of reducibility was introduced by James Jantosciak in 1990 at the Fourth 
International AHA Congress [42]. He noticed that it may happen that the hyperoper- 
ation does not distinguish between two elements, i.e., that two elements have the same 
role with respect to the hyperoperation. He defined three equivalence relations in order 
to claster elements with the same behaviour and called them fundamental.

The fundamental relations defined by Jantosciak [42] on an arbitrary hypergroup 
are operational equivalence, inseparability and essential indistinguishability.

Deflnition 2 .1. [42] Two elements x,y in a hypergroup o) are called:

1. operationallg equivalent or by short o-equivalent, and wnte x y, ifxoa yoa,
and ao x = aoy, for any a £ H;

2. inseparable or by short i-equwalent, and wnte x y, if, for all £ £
a o b<*=*► y e aob;

3. essentially indistinguishable or by short e-equivalent, and wnte x ~ e y, if they are 
operationallg equivalent and inseparable.

Rem ark 2.1. Although they have the same name, the fundamental relations defined by 
Jantoscmk must not be confused with the fundamental relations defined in the previous

25
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section, which are also called fundamental and connect classical algebraic structures 
with hgperstructures.

Deflnition 2.2 . [42] A reduced hgpergroup has the equivalence class of each element 
mth respect to the essentiallg indistinguishable relation ~ e a singleton, i.e., for any 
x e H, there is xe =  {x }.

As we can see from the previous definition, if the equivalence class of any element 
x e H contains no elements except x, the hypergroup is called reduced. Otherwise, we 
call it a non-reduced hypergoup. Regarding the definition of a reduced hypergroup, we 
have to take care that xe = {x }  does not mean that the equivalent classes with respect 
to both, the operational equivalence and the inseparability are singleton. Moreover, it 
can happen that neither these two equivalence classes is singleton. Let us suppose that, 
for example, x0 = {x,y}  and Xi =  { y,z }.From here, it follows that xe x0CiXi =  {x }.

However, if the hypergroup H is not reduced, so there exist two elements which 
belong to the same equivalence class, i.e., xe = ye = {x,y},  then it neccesarily implies 
that x0 = y0 D {x,y};Xi = ŷD {x,y}.

In the same paper, Jantosciak defined a reduced form of a hypergroup, i.e., he found 
a manner how to construct a new reduced hypergroup from the given one.

Proposition  2.1. [42] For any hypergroup ( , •), the quotient ( /  ~ e,*) is a reduced 
hypergroup and it is called a reduced form of the hypergroup H.

The quotient hypergroup H/  ~ e contains equivalence classes xe with where
xe*ye = {ze : z e xy}.

Proposition  2.2 . [42] Let f  be amapping from H onto a reduced hypergroup such 
that x ■ y =  / _1 ( /(£ )/(? /)) , for all x,y e H. Then =  /  ~ e .

The above proposition characterizes a reduced form ~ e as the reduced hyper- 
group from which is possible to reconstruct the hypergroup H. According to this, as 
Jantosciak explained in [42], we can split the study of hypergroups into two parts, the 
study of reduced hypergroups and the study of hypergroups with the same reduced 
form.

The following proposition shows that a hyperoperation on H may be reconstructed 
from the hyperoperation on H/ ~ e via the canonical mapping / : / / —>• ~ e where 
x • y = f ~ l(f(x)f{y))- Also, the proposition enables us to determine all hypergroups 
having the hypergroup H as their reduced form [42].
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Proposition  2.3. [42] Let H be ahypergroup and K be a set. Let mappmg from
K onto H, such that x • y =  / _ 1( /(x )  f(y)), for all e H. Then K is a hgpergroup
and the hgpergroup H is reduced if and only

The following example explains the role of these fundamental relations.

Exam ple 2.1. [42] Define on the set H =  Z x Z*, where Z is the set of integers and 
Z* = Z \ {0 }, the equivalence ~  that assigns equivalent fractions in the same class: 
(x,y) (u,v)if and only if xv =  yu,for (x,y), (u,v) G H. Endow H with a hypercom-
positional structure, considering the hyperproduct o (y,z) =  It
can be proved that the equivalence class of the element (x,y) e H with respect to all 
three fundamental relations is equal to the equivalence class of (x,y) with respect to 
the equivalence ~  . The equivalence class of an ordered pair (x, y) contains all order 
pairs (u,v), such that the fractions  ̂ are equal to Therefore, H is not a reduced 
hypergroup, but its reduced form is isomorphic with Q, the set of rationals [22].

In the following we give an example of a non-reduced hypergroup and its reduced 
form.

Exam ple 2 .2. Let (H,o) be a hypergroup, where the hyperoperation 
by the following table:

o e a b c
e e a b, c b, c
a a b, c e e
b b, c e a a
c b, c e a a

o ” is defined

(2. 1)

Since the rows corresponding to the elements b and c are exactly the same, then b ~ 0 c. 
Since it is obvious that the elements b and c occur together in each hyperproduct, we 
conclude that bi = Ci =  {b,c}, which finally gives that = = {b,c}. However,
ee = {e } and ae =  {a }. Since there exists an element such that its equivalence class is 
not a singleton, the hypergroup is not reduced.
Let us construct the reduced form of the hypergroup H. According to Proposition 2.1, 
the obtained hypergroup will be reduced.
For ease of presentation we will illustrate a reduced form via Cayley table, too.

K ee ae be
ee ee ae be
ae ae be ee
be be ee ee

(2.2)
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It is easy to check that the hyperstructure ( ,*), where K H/  ~ e, is associative
and that the reproducibility is satisfied. Thus, (H/  ~ e,*) is a hypergroup and it is 
obviously reduced.

As it is stated in Proposition 2.3, we can reconstruct a hyperoperation on H via the 
mapping /  : H ->■ H /~ e . Indeed, / _ 1( / ( a ) * / ( 6)) =  / _ 1(ae* 6e) = / - 1(ee) =  e = aob. 
Similarly we can verify the statement for all other hyperproducts where x,y

In the following we give an example of a reduced hypergroup.

Exam ple 2.3. Let (H,o) be a hypergroup, where the hyperoperation ” o ” is defined 
by the following table.

o a b c d
a a a a, b, c a, b, d
b a a a, b, c a, b, d
c a, b, c a, b, c a, b, c c, d
d a, b, d a, b, d c, d a, b, d

(2.3)

One easily notices that a ~ 0 b, because the lines (and columns) corresponding to a 
and b are exactly the same, thereby: a0 = b0 =  {a ,6}, while c0 =  {c } and dQ =  {d}. 
But, on the other side, each element in H has equivalence class containing exactly one 
element with respect to the relation ~j, as well as with respect to the relation ~ e, 
by consequence (H, o) is reduced. Here, a reduced form H/  ~ e is isomorphic to the 
hypergroup H.

In [24] Cristea et al. discussed about the regularity of the fundamental relations, 
proving that the operational equivalence and essential indistinguishability are regu- 
lar, while the inseparability is not regular. Also, they proved that in general none of 
them is strongly regular. This means that the corresponding quotients modulo these 
equivalences are not classical structures, but hyperstructures.

If we consider Example 2.3, we can easily show that the relation ~ 0 is a regular 
relation, but not a strongly regular relation. Since a ~ 0 b, then the regularity of the 
relation ~ 0 would imply that for every u € and for every x € u o there exists 
y e u o b such that x ~ 0 y, and for every a o there exists y o such that 
x ~0 y. Obviosly, for any u e H , \ I x e u o a  then x G u o and it holds that x ~0 x. 
Due to the commutativity of the hypergroup, the other relations from the regularity 
definition also easily follow.
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However, the operational equivalence is not strongly regular. If we assume strongly 

regularity of the relation ~ 0 is , then a ~ 0 b implies that: Vx e a o u, \/y e b o u there 

is x ~ 0 U- Taking that x =  a,u =  c and y =  c, if follows that a ~ 0 c, which is not 

satisfied.

E x am p le  2 .4 . Let H =  {a,b,c} be the following hypergroup:

o a b c
a a a, b, c a, b, c
b a, b, c b, c b, c
c a, b, c a, b, c a, b, c

(2.4)

Notice that the elements b and c are essentialy indistinguishable, i.e., b ~ j  c. If we 

suppose that the relation ~ j is regular, we get: Prom c b it follows that for all u e H 
and for all x e c o u there exists y e b o u such that x ~ j  y. Taking that u =  b, then 

for the element a which belongs to c o b, there does not exist an element y in b o b, such 

that a ~ j  y. Since b o b =  {b,c}, indeed a r>oi b and a r>oi c. Thus, the relation ~ j  is not 

a regular relation.

Let us show, at the end, that in general, the relation ~ e is not a strongly regular 

relation.

E x am p le  2 .5 . Let H =  {a ,6 ,c }  be the following hypergroup:

O a b c

a a, b a, b H
b a, b a, b H

c H H c

(2.5)

Is it easy to see that the relation ~ e is regular. Notice that the elements a and b are 

the only elements in the hypergroup such that a ~ e b. Strongly regularity would imply 

that: For all u e H and Vx e a o u, Vy e b o u : x ~ e y. Taking that u =  c, the element 

a belongs to a o c, the element c belongs to b o c, but a ooe c. Thus, the relation ~ e is 

not strongly regular.
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2.2 Reducibility of hypergroups connected with the 
binary relations

In this section we present some results proved by Cristea and Stefanescu in [23]. They 
associated different hypergroupoids with binary relations defined on a set H. Also, 
they investigated the reducibility in hypergroups associated with the binary relation. 
The authors gave necessary and sufhcient conditions for hypergroupoids in order to be 
reduced hypergroups. Further, they gave conditions such that hypergroups associated 
with the intersection, union and composition of relations are reduced.

Rosenberg has associated a partial hypergroupoid Hp ( , o) with a binary relation
p defined on a set H, where for any x,y G H, as [59]

x o x = Lx = {z e H : (x, z) e p}, U

Let p be a binary relation defined on a non-empty set H. Denote by Lpx the set 
containing all elements z such that xpz, i.e., G (x,z) G p}. Similarly,
Rp = {z E H : (z,x) G p}. If p and 8 are two different binary relations on H, then:

L f 4 - {z e H : (x, z) e p D d } ~-Lpx n  L {

l l f - {z e H : (z, x) e P n S } = K n R ‘,

-- {z e H : (x, z) e p U d } = L px u  L l

II'OD

{z e H : (z, x) e P u 8 } = K u

Lf  = {z e H : (x..z) e p8} - { z e p : t e L ’ }

R.? = {z e H : (t x) e p8} = {z €-  Ltt '■t e R i )

If, for any x e H,LP = Lx then p = 8.

Proposition  2.4. [23J The hypergroupoid Hp reduced iff for all G such that 
x f  y either Lx f  Ly or Rx f  Ry.

Let Hp be a hypergroup associated with the binary relation p defined on H.

Proposition  2.5. [23] / /  p is an equivalence on H, then the hypergroupoid Hp is a 
reduced hypergroup if and only if p = A H =  {(x ,x ) : x e H}.
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Example 2.6. Let H =  Z and the relation is given on the set H with:

xpy iff x = y 5).

It is easy to check that the previous relation is an equivalence relation. But, according 
to Proposition 2.5, the hypergroup Hp associated with this relation is not reduced if 
p {(x ,x ) : x G H). Indeed, if we set 5 o a 10 o a, where G then L5 U 
Lio U La which is obviously satisfied because the elements 5 and 10 belong to the 
same equivalence class with respect to the relation p, having the same remainder after 
dividing by 5. Similarly, the equality a o5 = a o 10 is satisfied for any Also, the
elements 5 and 10 appear in the same hyperproducts because if 5 G 6 U L5,
i.e., 5 paor 5p6, then certainly 10pa or 10p6, which means that 10 G 6. We conclude 
that the hypergroup H associated with the relation p is not reduced. If we choose the 
relation ” is equal to” instead of the above defined equivalence relation, then it can be 
easily checked that the given hypergroup is reduced.

Proposition 2.6. [23] If p is anon-symmetnc quasiorder on , then the hypergroup 
is reduced if and only if for any x y, Lx Ly.

Example 2.7. Let < be a quasiorder relation on R. Then, according to the
definition of a hypergroup (Hp,o), the hyperproduct
{z e H : x < z}, i.e., the hyperproduct x o x contains all elements greater or equal to 

x. Here, for any two different elements x and y, the sets Lx and Ly are different, as 
well. Proposition 2.6 states that such hypergroup (Hp,o) is a reduced hypergroup.
Let us prove it on this particular example. Let us assume that for all
a e H. If equality holds for any a, then it is obviosly satisfied for any G such that 
a < x < y. Since x o y = L xU Ly,then the equality gives that Lx = Ly 
which further implies that x = y. Thus, x o a = for any a implies that x = y, i.e., 
x0 = x for any xG R.Hence, xe = x for any G which finally gives that ( o) is 
a reduced hypergroup.

Proposition 2.7. [23] If p is areflexive, symmetnc, non-transitive relation on H, such 
that p2 = Hx H,then the hypergroup (Hp, o) is reduced if and only if Lx Ly for all 
x,y e H such that x y.

Proposition 2.8. [23] Let p and 5 be two quasiorder relations on H. If the hgpergroups 
Hp and H$ are reduced then the hgpergroup Hpns is reduced, too.

Proposition 2.9. [23] Let p and 5 be two binary relations on H with full domain and 
full range such that p2 = p,82 = 8 and p8 = 8p. If the hgpergroup Hps is reduced then 
Hp and Hs are both reduced.
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In the following we present the new results related to the reducibility in hypergroups.

P rop osition  2 .1 0 . Any subhypergroup (K, o) of a reduced hypergroup (H, o) is a re- 
duced hypergroup.

Proof. Let a be the element from the set K. Since K  is a subhypergroup, then K  C 

H. Then the element a belongs to the set H, as well, and since (H, o) is a reduced 

hypergroup, then ae =  {a } i.e., (K, o) is a reduced hypergroup, too. □

R em ark  2 .2 . A subhypergroup of a non-reduced hypergroup can be reduced or not.

E x am p le  2 .8 . Let the hypergroup (H, o) be given by the following table

o a b X V
a a b x ,y x ,y
b b a x ,y x ,y
X x ,y x ,y a, b a, b

y x ,y x ,y a, b a, b

The hypergroup (H, o) is non-reduced since x o c =  y o c for any c G H and x and 

y appear in the same hyperproducts. Thus, x ~ e y and consequently, (H, o) is not a 

reduced hypergroup. Let us note with K  the subset {a, b} of the set H. Since (K, o) is 

a hypergroup itself and K  C H, then the hyperstructure (K, o) is a subhypergroup of 

a hypergroup (H,  o). It is easy to see that (K,  o) is a reduced hypergroup.

In the following we show the interesting property of the reducibility, saying that the 

surjective homomorphism preserves reducibility.

P rop osition  2 .1 1 . Let (p be a good surjective homomorphism from the hypergroup 
(R,+) to the hypergroup (T, © ). If two elements are essential indistinguishable urith 
respect to the hyperoperation +  , then the images of the same elements through (p are in 
the essential indistinguishable relation with respect to the hyperoperation © .

Proof. Let x and y be elements from R such that x +  a =  y +  a, where a e R. 
This gives that {4>(l)\l € x +  a} =  {f>(k)\k e y +  a}, so f>(x + a) =  4>(y + a). From 

here, f>(x) © 4>(a) =  4>(y) ©  4>(a). Denote f>(a) =  b and 4>(x) =  X\,4>(y) =  y\. Thus, 

X\ ©  b =  y\ ©  b. If the equality x + a =  y + a holds for every a e H then the last equality 

holds for all b e T  since {(f>(a)\a e R} =  T. Assuming a + x =  y + x for all a e R, 
similarly (f>(a) © (f>(x) =  (f>(a) ©  (f>(y) for all a e R. Hence, if x y then (f>(x) o

Let x y, i.e., x e a +  b if and only if y e a + b for all a,b e R. From this equivalence 

we get that (f>(x) e {4>(l)\l e a + b} if and only if (f>(y) e {(f>(k)\k e a + b}, so (f>(x) e
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p)(a + 6) if and only if <j>(y) e <j>(a + b). Since is a homomorphism, <j>(x) e 0(a) © </>(6) 
if and only if (p(y) e 0(a) © 0(6). Let 0(x) =  X\,(/)(y) y\ and (p(a) a\,(p(b) = b\.
Since the mapping is surjective, a\ © b\ covers the whole set T. Hence, e a\ © b\ 
is equivalent with y\e a\ © b\, for all a i ,6i G T. Here, x ~ + y implies <p(x) f  <t>(y)-
The definition of the essential indistinguishability relation, together with the above 
implications give the proof of the claim. □

2.3 Reducibility in canonical hypergroups

In this section we study the reducibility of canonical hypergroups. After we investigate 
the reducibility for an arbitrary canonical hypergroup, we introduce a special class of 
canonical hypergroups, so called i.p.s. hypergroups. We present here some important 
properties of these hypergroups, neccesary for the study of their fuzzy reducibility.

Theorem  2.1. Any canonical hypergroup is a reduced, hgpergroup.

Proof. Since any canonical hypergroup has a scalar identity 0 such that 0ox = xo0 = x 
for any x G H,then if we set ao x = ao yfor any G by taking 0 we get:
0 o x =  0 o y, which implies that x = y. Thus, xQ =  { x }  for all x E H, so obviously 
xe =  {x } for any x E H.Hence, His a reduced hypergroup. □

Rem ark 2.3. In the previous theorem, since an arbitrary element has singleton equiva- 
lence class with respect to the operational equivalence, then obviosly, it has a singleton 
equivalence class with respect to the essential indistinguishability, but even more, it 
holds that x% =  {x }  for all x G H,since two elements does not appear in the same 
hyperproducts ao 6, where a,b E H.Since x E x o 0, the element y belongs to the same 
hyperproduct just if y = x, i.e., x E a o 6 if and only if y e  a o 6 holds only if x

Exam ple 2.9. Let S =  { — 1,0, 1}, and the hyperoperation o is given by the following 
table ____________________

o -1 0 1
-1 -1 -1 H
0 -1 0 1
1 H 1 1

The hypergroup (H, o) is a canonical hypergroup. Indeed, 0 is a scalar identity, since 
for all x G H,xo0 = 0ox = x. Also, since 0 E 0 o 0 then 0_1 =  0. Similarly, 0 E 1 o (— 1) 
and 0 E — 1 o 1, and consequently, 1_1 =  —1 and (—1)_1 =  1. Thus, every element 
has a unique inverse. At the and, let us check the last condition of Definition 1.9. If
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0 G 1 o (—1), then —1 belongs to the sets l -1 oO and Oo (— l ) -1 . Similarly, the condition 
can be checked for the other hyperproducts.
Since the rows in the table are distinct, we conclude that x0 =  {x }, for x e { — 1 ,0 ,1}. 
Hence xe =  {x }, for any x in H, which gives that the given hypergroup is reduced.

The following proposition states that the canonical hypergroup modulo canonical 
subhypergroup is a reduced hypergroup.

Proposition 2.12. Let (H, +) be a canonical hypergroup and N be an arbitrarg canon- 
ical subhgpergroup of H. Then the quotient reduced hgpergroup.

Proof. The Proposition is the direct consequence of Proposition 1.1 and Theorem 2.1.
□

Now we will introduce a class of canonical hypergroups, called i.p.s. hypergroups.

An i.p.s. hypergroup is a canonical hypergroup with partial scalar identities [12]. 
Its name, given by Corsini [12] comes from the Italian language, and the abbreviation 
” i.p.s.” is derived from the "identita parziale scalare” , which translated into English, 
means partial scalar identity. We have to keep in mind that the notion of a partial 
scalar identity and the notion of a identity in a hypergroup ( , o) must not be confused.
Recall that an element xe His called a sca, if =  o 1, for any e
An element e e His called partial identitg of H if it is a left identitg (i.e., there exists 
x e H such that xe eox)or a nght identitg (i.e., there exists e such that y e yoe)
[12]. Denote the set of all partial identities of H by Ip. Besides, for a given element 
x e H, a partial identitg of x is an element e such that e U The
element ue His a partial scalar identitg of if e implies that and
whenever xe uo xit follows that x = u o x .For any element , Ip ( ) denotes the set
of all partial identities of x, Ips (x) denotes the set of all partial scalar identities of ,
while Sc(H) denotes the set of all scalars of H. It is easy to see that the intersection 
of the sets Ip(x) and Sc(H) gives the set Ips(x).

Remark 2.4. Regarding the expression "partial identity” we have to pay attention 
on the term "partial” , that does not mean ” left or right” (identity). An element u 
is a partial identitg is equivalent with the fact that u behaves partially as an identity 
with respect to an element x. Thus, u is not a left/right (i.e., partial) identity for 
the hypergroup H. Besides, an i.p.s. hypergroup is a commutative hypergroup, so the 
concept of partial intended as left/right element satisfying a property (i.e. left/right 
unit) has no sense. Therefore, we observe that an element u has the property of being 
partial identity for x means that that it has a similar behaviour as an identity but only 
with respect to x (and not all the elements), so a partial role of being identity.
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Let us recall now the definition of an i.p.s. hypergroup. All finite i.p.s. hypergroups 
of order less than 9 have been determined by Corsini [10, 11, 12].

Deflnition 2.3. [12] A hypergroup (H,o) is called, i.p.s. hgpergroup, if satisftes the 
follomng conditions.

1. It iscanomcal, i.e.,

• it is commutative;

• it has a scalar identitg 0 such that 0 o for any x £

• every element x£ Hhas a umque inverse £ that 0 £ x~l;

• it is reversible, so y£ a o x = t- x £ a_1 o y, for any a,x,y £ H.

2. It satisftes the relation: for any a,x£ H, £ then

The most useful properties of i.p.s. hypergroups are gathered in the following result. 

Proposition 2.13. [12] Let (H,o) be an i.p.s. hgpergroup.

1. For any x£ H,the set x o x _1 is a subhgpergroup of H .

2. For any x£ H \{0 }, we have: or x£ Sc(H), or there exists u £ Sc(H) \ {0}
such thatu £ x o x~l. Moreover \Sc(H)\ > 2.

3. If x£ Sc(H), then Ips(x) contains just0.
If xSc(H), then Ips(x) C Sc(H) fiiroa ;-1 and therefore |/ps(a;)| > 2.

Proposition 2.14. Let (H, o)be an i.p.s. hypergroup. For any scalar u £ H and for 
any element x£ H,there exists a umque y£ such that £

Proof. The existence immediately follows from reproducibility. For proving the unicity, 
assume that there exist yi,y2 C H,yx y2 such that u £ n Then,
by reversibility, it follows that yi,y2 £ x~l o u. Since u is a scalar element, we get 
|x-1 o u\ =  1 and then yi = y2 = x~x o u. □

Example 2.10. [12] Let us consider the following i.p.s. hypergroup .

H 0 1 2 3
0 0 1 2 3
1 1 2 0,3 1
2 2 0,3 1 2
3 3 1 2 0
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Here we can notice that, 0 is the only one identity of H. In addition, ) =  {0, 3}, 
and 0 € 0ouonly for u =  0, so Ips(0) =  {0}. Also, only for u 0 there is 3 G 3cm, thus
Ips(3) = {0}. (In general, if x e Sc(H) then Ips(x) =  {0 }, according with Proposition 
2.13.) Similarly, one gets 7P(1) = Ip(2) =  {0 ,3 } and since Sc(H) =  {0 ,3 }, it follows 
that Ips( 1) =  Ips(2) =  {0 ,3 }.

Note that, in an i.p.s. hypergroup, the Jantosciak fundamental relations have a 
particular meaning, in the sense that, for any two elements there is

a~0 b <=$■ ab—■> a~e a = b. [22]

By consequence, one obtains the following result.

Theorem 2.2. Any i.p.s. hypergroup is reduced.

Proof. This is the direct consequence of the Theorem 2.1. □

2.4 Reducibility in some cyclic hypergroups

Cyclic hypergroups have been introduced by De Salvo and Freni [36] and Vougiouklis 
[66] independently. The notion of cyclicity is well known since it is an important concept 
in theory of algebraic structures. The hypergroup is called cyclic if we can obtain 
whole hypergroup applying a hyperoperation on a specihc element which represents a 
generator of a hypergroup. Corsini did a synthesis of two approaches in his book [13] 
and gave dehnitions using unambiguous terminology. After we recall the dehnitions we 
will examine reducibility for certain types of cyclic hypergroups and present examples 
of some (non) reduced cyclic hypergroups.

Definition 2.4. [13] A hypergroup H is called cychc mth a generator x if 4>h (H) is a 
cychc group generated from 4>h ( x ) , vohere 4>h E a canomcal projection.

Definition 2.5. [13] A semihypergroup is called cychc if there exists € such that 
\/x € H 3n€ N such that x € hn. We call h the s-generator of H. A hypergroup is 
called s-cyclic if it is a cychc semihypergroup.

Definition 2.6. [66] A hypergroup (H, o)is called a single-poiver cychc hypergroup if 
there exists h€ Hand s€ N such that H = hUh2U- ■ ■ hsU- ■ ■ and hUh'Uh^U- ■ ■ hm~l C
hm for every m € N. The smallest povver s for vvhich formula H = U U • • • U • • • 
is valid is called a period of h.
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P rop osition  2 .1 5 . The only single-potver, non-reduced, cyclic hypergroup of order two 
is the total hypergroup.

Proof. Let H be a hypergroup of order two, where H =  {a,b}. If we suppose that 

a o x =  b o x, and x o a =  x o b for all x e  H and if a2 =  H then it holds that 

ao a =  b o a =  H. Also, b o a =  b o b which implies that b o b =  H. Similarly, a o b =  H. 
Thus, H is a total hypergroup. □

E x am p le  2 .1 1 . Let H be a hypergroup given by the following table

o a b
a H b
b b a

(2.6)

The hypergroup (H, o) is a single-power cyclic hypergroup and it is easy to see that it 

is a reduced hypergroup.

P rop osition  2 .1 6 . Let H be a commutative single-poiver cyclic hypergroup of period 
2, such that all its elements are generators, ivith \H\ =  3. Then the hypergroup H is 
not reduced only if it is a total hypergroup.

Proof. Let H =  {a, b, c} and a2 =  b2 =  c2 =  H. In order to be a non-reduced hyper- 

group, the equivalence class of at least one element has to be a non-singleton set. Let 

us suppose that ae =  be =  {a,b}. This means that a ~ 0 b, which obviosly implies that 

a o a  =  a o b = H .  Due to the commutativity there is b o a =  H. In order to make 

elements a and b be operationally equivalent, it must be valid that a o c =  b o c. Now 

we will consider all possible options for the hyperproduct a o c =  b o c.

If aoc =  boc =  a, then due to the associativity it is valid that (ao c) oc =  ao(coc).  
Since a o( co c)  =  a o H  =  H, then ( a o c ) o c  =  a o c  =  H which contradicts with the 

assumption.

Similarly, taking that aoc =  boc =  b, and using that (boc)oc =  bo(coc) =  boH =  H 
we get that a o c =  H, which is false.

At the end, i f a o c = 6 o c  =  c, using the associativity rule for b o (b o c), we again 

get a contradiction.

The only remaining options for this hyperproduct are the sets: {a,b}, {a,c}, {b,c}. 
We won’t consider the last two, because then it would hold that a r>oi b, which con- 

tradicts with the assumption that a ~ e b. Hence, the only possible option is that 

a o c =  b o c =  {a, b}, but such a structure is not a hypergroup since the associativity
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rule is not satisfied. Namely, (ao c)o c = ao ( but the left side of equality is equal 
to {a,b}, while the right side is equal to H. The proof is analogous if we assume that 
a ~ e c or b ~ e c. We conclude that the only hypegroup which satisfies the conditions 
of the Proposition and it is non-reduced, is the total hypergroup. □

Notice that in the case when I 4 the previous Proposition doesn’t hold.

Example 2.12. Let the hypergroup is given by the following table.

o a b c d
a H H d H
b H H d H
c d d H H
d H H H H

(2.7)

The hyperstructure given by the above table is a commutative single-power cyclic hy- 
pergroup. Also, every element of H is a generator with the period 2. Notice that the 
elements a and b appear in the same hyperproducts, which gives that a b. From the 
table we can see that ao x = bo xand x o a x o 6, for any e Hence, x ~ 0 y.
Therefore the hypegroup (H, o) is not a reduced hypergroup.

Now we will present an example of an infinite single-power hypergroup and study 
its reducibility.

Example 2.13. Let I be an open interval = (0 ,1) and let the hyperoperation be
given by: a * b = [a ■ b)< = {xe I : a ■ b <x}. In [55] it has been proved that 
the structure ( /,* )  is a single power cyclic hypergroup with an infinite period for an 
arbitrary a e I .Let us prove that the hypergroup is reduced.
Let a and a\ be elements from /  such that o a\ o for all in Then [a ■ b)< = 
[czi • b )<, i.e., {x : x > ab} = {x : x > a\b} which is fulfilled just in the case when 
a ■ b = a\ ■ b. Thus, a = a\. Hence, for all a e it holds that a0 =  {a } , and thus 
ae =  {a }, for all a G I. Therefore, ( / ,* )  is a reduced hypergroup.

In the following, we will show examples of hypergroups which are join spaces and 
are reduced hypergroups.

Example 2.14. Let p be a reflexive and symmetric relation on H.  Let us consider the 
hyperoperation on H given with:

V(x, y) e  H2, x o x = Lx,x  oy  = LxU Ly,where e  (x, z) e
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In [48], L. Loreanu has proved that the hyperstructure o) is a join space. As we 
have already seen at the beginning of the chapter, this hyperoperation defined above 
was introduced by Rosenberg. Let the relation p be given on the set H  { x , y , z }  

with:
P  =  { (ar,  ar), (y,y), (z,z), (x,z), (z,x), (y,z), z,y ) } .

It is easy to check that the relation p is reflexive and symmetric. Using the definition of 
the hyperoperation ” o” we get that x o y  = xoy o z  H, while x o x  = {x, z } ,  y o y  = 
{ y ,  z }  and z  o z  =  H.The hypergroup ( H , o) is a reduced hypergroup, since we notice 
that arbitrary two elements from H  are not operationally equivalent, nor inseparable.

Example 2.15. Let V  be a vector space over an ordered field If E V  we can 
define: a o 6 =  {Aa + p 6 : A > 0 , p > 0 , A  + p =  1}, then (V,  o) is a join space, called an 
afhne join space over F  [32].
In the following we prove that ( H , o) is a reduced hypergroup.
Let a and 6 be two arbitrary elements from V  such that a ~ 0 b, i.e., o o

for all x E V.Using the definition of the hyperoperation ” o ” , and taking that x
we get: ao a = bo a.Thus, {Aa + p a : A > 0 , p > 0 , A  + p =  1} =  {A6 + : A >
0,p > 0, A + y = 1}. Since the first set contains just the point a, it will be equal to
the segment [a, 6] just in the case when a =  6. Thus, ~ 0 6 implies 6. From here, 
ae =  {a } for all a E V, i.e., H is a reduced hypergroup.

2.5 Reducibility in complete hypergroups

In this section we recall a very important class of hypergroups, so called complete 
hypergroups. We give the definition of a complete hypergroup and we also describe a 
way how to construct different complete hypergroups. In order to study the reducibility 
in complete hypergoups, we introduce a certain equivalence relation in order to identify 
elements which are in the same equivalence class with respect to the relation ~ e . Let 
( H ,  o) be a proper complete hypergroup (i.e. H  is not a group). Define now on H  the 

equivalence ” ’ by:

x ~ y3g e G such that e A g . (2.8)

Proposition 2.17. O n  a p ro p er  com p lete  hppergroup (H , o) , the equ iva lence ~  in  (2.8) 
is a rep resen ta tion  o f  the essen tia llg  ind istin gu ish abih tg  equ iva lence ~ e .

P roof. By Theorem 1.11, one notices that, for any element x  E there exists a 
unique g e G,namely gx , such that x  E A 9x. First, suppose that x  ~  i.e., there
exists gx = gyE Gsuch that x,yE A gx. For any arbitrary element E we can say
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that a € Agal with ga e G , and by the definition of the hyperproduct in the complete 
hypergroup ( H , o ) , there is x  o a = A9x9a = Agy9a o (and similarly, a o a o y,)
implying that x  ~ 0 y(i.e., x  and y  are operationally equivalent.) Secondly, for any 
x e a o b = Agagb n  A9x1 it follows that gagb ; but gx so e Agagb o
Thereby, x  belongs to the set aob if and only if y  belongs to the same set, which means 
that xy (i.e. x  and y  are inseparable). We have proved that .
Conversely, let us suppose that x  ~ e y. Since x  and y  are inseparable, i.e., x  G o if 
and only if yG ao 6, we may write x, yG Agagb. Therefore there exists € 
such that x, ye A9x, so x  ~  y. □

Exam ple 2.16. Considering Example 1.5, we notice that the equivalence classes of 
the elements of H with respect to the equivalence ~  defined in (2.8) are: e =  {e}, 
d\ = â  =  C13 =  {ai, 02,03}- If we consider ~ e, we again get the same equivalences 
classes: ee = {e}, di =  { 01, 02,^3} =  ®2e =  03 e.

Theorem  2.3. A n y  p ro p er  com p lete  hypergroup is n o t reduced.

P roof. Let ( H , o) be a proper complete hypergroup (meaning that it does not coincides 
with a group). Then there exists at least one element in such that > 2. From 
here we conclude that there exists elements a and 6, in H with 6, such that ~  6. 
Thence, a~e bwhich directly proves non-reducibility of ( , o ) . □

The following example is an example of a complete hypergroup which is generated 
by the non-commutative group of quaternions.

Exam ple 2.17. Let ( H , o) be a hypergroup represented by the following Cayley table:

H a i a 2 a 3 a 4 a 5 a 7 a 8 a 9 a 10 a ll a 12 a 13

a \ a l , a 2 a i , a 2 a 3 , a 4 a 3 , a 4 a 5 a 6 , a 7 , a§ a 6 , a 7 , a§ a 6 , a 7 , a§ a 9 a 10 a ll, a 12 a ll, a 12 a 13

a o a \  1 a 2 a i , a 2 a 3 , a 4 a 3 , a 4 a 5 a 6 , a 7 , a 8 a 6 , a 7 , a 8 a 6 > a 7 , a 8 a 9 a 10 a ll, a 12 a ll, a 12 a 13

a 3 a 2 , a 4 a 3 , a 4 a l , a 2 a l , a 2 a 6 , a 7 , a§ a 5 a 5 a 5 a 10 a 9 a 13 a 13 a ll, a 12

CI4 a 3 , a 4 a 3 , a 4 a l , a 2 a l , a 2 a 6 , a 7 , a 8 a 5 a 5 a 5 a 10 a 9 a 13 a 13 a ll, a 12

a $ a s 05 a 6 , a 7 , a§ a 6 , a 7 , a§ a 3 , a 4 a l, a 2 a l, a 2 a l , a 2 a ll, a 12 a 13 a 10 a 10 a 9

a 6 a 6 ) a 7, a s a 6 , a 7 , a 8 a 5 a 5 a l, a 2 a 3 , a 4 a 3 , a 4 a 3 , a 4 a 13 a ll, a 12 a 9 a 9 a 10

a 7 ^6 > 07, a§ a 6 ,07, a§ a 5 a 5 a l, a 2 a 3 , a 4 a 3 , a 4 a 3 , a 4 a 13 a ll, a 12 a 9 a 9 a 10

a 8 a 6 ) a 7, a s a 6 , a 7 , a 8 a 5 a 5 a l, a 2 a 3 , a 4 a 3 , a 4 a 3 , a 4 a 13 a ll, a 12 a 9 a 9 a 10

a g a Q a Q a 10 a 10 a 13 a ll, a 12 a ll, a 12 a ll, a 12 a 3 , a 4 a l , a 2 a 5 a 5 a 6 > a 7 , a§

a \ 0 a 1 0 a \ 0 a 9 a 9 a ll, a 12 a 13 a 13 a 13 a l , a 2 a 3 , a 4 a 6 , a 7 , a 8 a 6, a 7 , a 8 a 5

a n Oll, Ol2 a ll, a 12 a 13 a 13 a 13 a 10 a 10 a 10 a 6 ,07, a§ a 5 a 3 , a 4 a 3 , a 4 a l, a 2

a l 2 a ii, a 12 a ll, a 12 a 13 a 13 a 13 a 10 a 10 a 10 a 6 > a 7 , a 8 a 5 a 3 , a 4 a 3 , a 4 a l, a 2

a n Ol3 a 13 a ll, a 12 a ll , a 12 a 10 a 9 a 9 a 9 a 5 a 6 ,07, a§ a l , a 2 a l, a 2 a 3 , a 4

(2.9)
The hypergroup (H,o) is complete, where the group Qg = {=F 1, =FŽ, The
hypergroup H can be partitioned into disjoint sets: A0 = {e},Ai =  {a i,a 2} ,^ - i  = 
{Q'S}Qja} 1A{ - {a5},^4_i • {a^,a7,ag}, Aj{ag},^—̂ • {uio},-d/c {an,ai2},
{a i3}, and H =  (JgeG Ag.
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Rem ark 2.5. The conjugable subhypergroup of a complete hypergroup is not a re- 
duced hypergroup. It is known that every conjugable subhypergroup of a hypergroup 
is a complete part [35]. According to Theorem 2.3, two arbitrary elements from the 
complete part are in the same equivalence class with respect to the essential indistin- 
guishability relation, hence any conjugable subhypergroup of a complete hypergroup 
(which must be a complete part) is not a reduced hypergroup, too.

2.6 The reducibility in Corsini hypergroups

In this section we study the reducibility in Corsini hypergroups. We determine nec- 
essary and sufficient conditions for Corsini hypergroups to be reduced and study the 
reducibility in the productional hypergroups containing Corsini hypergroups.

Proposition 2.18. L et (//, o) be a C o rs im  hypergroup. ex ist s o m e  chfferent

e lem en ts  x , y  in Hsuch that x  o  x  =  y o y,then the hgpergroup  ( , o) is n o t reduced.

Proof. Let x , y be arbitrary elements in H such that x ^ y and o o It is easy 
to see that x o a = y o a,for any a e  H,since x o a  =  x o x U a o a  =  ?/ot/LJaoa = |/oa.
Using the commutativity, we obtain that a o o for any Hence, x ~ 0 y. 
Let x e  c o d,with x,c,d e H. Then x E c o cU d o d, which implies that x E co c ov 
x G d o d. Since ( H , o) is a Corsini hypergroup, the previous implication gives c e 
or d e x o x and c e y o y o v d e y o y .  Using the same property, we conclude that 
y e c o d. Similarly, one proves the converse implication. Therefore, x y. Hence, the 
hypergroup (//, o) is not reduced. □

As a consequence of Proposition 2.18, we obtain the following results. It gives 
necessary and sufficient condition for the Corsini hypergroup to be reduced.

Proposition 2.19. A C o rs im  hgpergroup  (//, o) with at least tw o d ifferen t e lem en ts  is 

reduced i f  and on ly  i f x o x ^ y o y ,  f o r  all x , y

P roof. The contraposition of Proposition 2.18 directly gives the first direction. Suppose 
now that x o x yo y , for all x , y eH. Take two arbitrary elements i  /  )/ from H.
We will prove that x o a = yo a, for all a e H ,just in case when Assume that
xoa = y o a ,  for all a e  H. Prom here, we have x o x  y o x ,  which gives x o x  = y o y ( J x o x .  

The last equality is possible only \ f y o y C x o x .  Similarly, since x o y  =  y o y , \ t  follows 
the other inclusion xox C y o y .  Therefore, x o a  =  y o a \ s  equivalent with x o x  =  

which contradicts the hypothesis. Hence, two arbitrary elements x  and y , x  ^ y  are
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not operationally equivalent, thus xe =  {x }  for all x e meaning that is a reduced
hypergroup. □

Proposition  2.20. Any B-hypergroup is reduced.

Proof. This immediately follows from Proposition 2.19, since in a B-hypergroup there 
is x o x =  {x }, for all elements x. □

The following example shows Cayley table of a B — hypergroup (H, o), where \ H\ 3. 

Exam ple 2.18.
o X V Z
X X x,y X, O

V x,y V y c
Z X, O y c Z

In the following example we present a reduced Corsini hypergroup, which is not a 
B-hypergroup.

Exam ple 2.19. On the set H {a, b, c} define the hyperoperation ” o” by the following 
table: ___________________

o a b c
a H H H
b H a, b H
c H H a, c

Since all the rows in the table are different, it follows that x0 =  {x }  for any x e 
which clearly implies the reducibility of the hypergroup.

The following theorem determines whether the direct product of hypergroups is 
reduced, or not.

Theorem  2.4 ( [23]). The hgpergroup (Hx 0 )  is reduced if and only if the hyper- 
groups (H,oj) and (H,o2) are reduced.

Exam ple 2.20. Let H {a,b} and the hyperoperoperations and o2 are given with 
the tables

°2 a b
a a H
b H b

°i a b
a H H
b H H
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The hyperproduct of the hypergroups (H,oi) and o2) is the productional hyper- 
group (H x H, (££)) given by the following table

Oi X o2 (a,a) (a,b) (b,a) (6, 6)
(a,a) {(a,a),(b,a)} H x H {(a,a), (6, a)} H x H
(a,b) H x H {(£1,6), (6,6)} H x H { (a ,6) , (6, 6)}
(b,a) {(a,a),(b,a)} H x H {(a,a), (6, a)} H X H
(6, 6) H x H {(£1,6), (6,6)} H x H { (a ,6) , (6, 6)}

Since the total hypergroup is not-reduced, according to Theorem 2.4, the productional 
hypergroup is not reduced, too. Indeed, (a, a) ~ e ( 6, a) and (a, 6) ~ e ( , ) which implies 
the non-reducibility of (// x H,x o2).

Proposition  2.21. The direct product of B-hypergoups is reduced.

Proof. Since any B-hypergroup is reduced, this is a direct corollary of Theorem 2.4. □



Chapter 3

Fuzzy reducibility in hypergroups

The following chapter is dedicated to the study of the fuzzy reducibility. Here we 
consider crisp hypergroups endowed with a fuzzy set and investigate their reducibility.

As already mentioned in the introductory part of this thesis, the extension of the 
concept of reducibility to the fuzzy case can be performed on a crisp hypergroup en- 
dowed with a fuzzy set, by defining, similarly to the classical case, three equivalences 
as follows.

Deflnition 3.1. [22] In a crisp hppergroup o) endoived mth a fuzzy set p, we define 
the following equivalences:

1. x and y are fuzzy operationallg equivalent and write ~ /0 if, for any a e  H, 

p(x o a) = y(y o a) and p(a o x)  = p(a o y);

2. x and y are fuzzy inseparable and write x U y (%)£ o b) e
p(a o b), for a,b e H;

3. x and y are fuzzy essentiallg indistinguishable and write ~ / e if they are fuzzy 
operationallg equivalent and fuzzy inseparable.

Deflnition 3.2. [22] The cnsp hgpergroup o) is a fuzzy reduced hgpergroup if and 
only if the equivalence class of each element in H with respect to the fuzzy essentiallg 
indistinguishable relation is a singleton, i.e.,

for all x e  H , X f e { x } .

Notice that the notion of fuzzy reducibility of a hypergroup is strictly connected 
with the definition of the involved fuzzy set.

44
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Rem ark 3.1. [22] It is easy to see that, in any hypergroup H  endowed with an arbitrary 
fuzzy set f i ,  the following implication holds: for any a, 6 €

a ~ 0 6 => a ~ /0 6.

Rem ark 3.2. (i) Let us hrst clarify in detail the meaning of o 6) ,  for any 
and any arbitrary fuzzy set n defined on H. Generally, the hyperproduct o 6 is a 
subset of H, so /j,(a o 6) is the direct image of this subset through the fuzzy set n, i.e., 
fi(a o b) = {/j, (x) \ x e a o b}.

It is important to emphasize the following relations. If the hyperproduct 6 is a 
singleton, i.e., a o6 =  {c }, then fi(ao b) is a set which contains only the real number 
fi(c). Thereby, we can write fi(c) € fi(aob), nevertheless we cannot write fi(c) 
fi(a o b), because the hrst member is a real number, while the second one is a set 
containing the real number fi (c).

Moreover, if a€ x o y,then, obviosly fi(a) € but the conversely doesn’t
hold, because it may happen that fi(a) e fi (x' o for .

(ii)Generally, a6 a~/» 6, as we can see in the next example. Indeed, if 6
then a€ xo yif and only if 6 € xo y.But it may happen that (x' o y') with
a ^ x' oy', so also b ^ x' o y'. Also, if y(a) ^ fi(b), then (6) (x' o y'), thus a 7O 6.

(iii) Finally, it is easy to conclude that y(a) = fi (b) impliesa ~ /» 6.

The following example justihes all the above mentioned assertions.

Exam ple 3.1. [19] Let (H,  o)be a hypergroup represented by the following commu- 
tative Cayley table:

o e a i «2 a3
e e a i a2,a3 a2,a3
ai a2,a3 e e
a2 a\ a\
a3 a\

(3-1)

One notices immediately that a2 a$, while a\ 7O a2.
a) Dehne now on H the fuzzy set fi as follows: fi (e) =  1 (ai) =  fi (â ) =  0.3, (â ) =
0.5. Since fi (ai) =  fi (a^), it follows that a\ ~fi a2- Moreover, since e o a\ =  {a i}, we 
have

y ( e o  a\) =  { f i  (ai)} =  {0.3} 3  y  (a2) ,

while it is clear that fi (a )̂ ^ a i ) , so a2 â .
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b) If we define on H the fuzzy set //, by taking // (e) =  / / (aj) =  I, // (^2) =  // (03) = 
it follows that e tti and a2 ~ /, a:i.

As we have already underlined, it is clear that the equivalences ~ / 0, ~ /i, and ~ / e 
are strictly related with the definition of the fuzzy set considered on the hypergroup.

In the following we present the example of an infinite hypergroup and study its fuzzy 
reducibility.

Exam ple 3.2. Consider the partially ordered group (Z, +, < ) with the usual addition 
and orderings of integers. Define on Z the hyperoperation a * b = { x e T 1\a + b< x} .  
Then (Z, *) is a hypergroup [55], Define now on Z the fuzzy set p as follows: p(0) =  0 
and n{x) =  for any x 7̂  0. We obtain {.r}, for any € Z, therefore
(Z, *) is fuzzy reduced with respect to /r  Indeed, for two arbitrary elements x and 
y in Z, we have r  ~ /„  y if and only if //.(.r * //,(// * a), for any a € Z, where
y{x*a) = { ^ ,  p+i+i], andsimilarly,p(z/*a) = { ^ ,  , • • •}• Since
a is an arbitrary integer, for any x and y we always find a suitable integer a such 
that x + a> 0 and y + a> 0. This means that the sets y{x * a) and y{y * a) contain
descending sequences of positive integers, so they are equal only when x = y. Therefore 
x ~ fo y.

In the following, we will study the fuzzy reducibility of some particular types of finite 
hypergroups, with respect to the <?rade fuzzy set /'/, defined by Corsini [16], We recall 
here its definition. With any crisp hypergroupoid {H, o) (not necessarily a hypergroup) 
we may associate the fuzzy set /'/ considering, for any u G H,

y{u)
£

(x,y)eQ(u)

1
\ x o y \

q{u)
(3.2)

where Q{u) = {{a,b) € H2 \ u€ a o6} and q{u) =  |<3(u)|. By convention, we take 
Jl{u) =  0 anytime when Q{u) =  0. In other words, as it is written in [29], the value 
Jl{u) represents the average value of reciprocals of the sizes of all hyperproducts x o y 
containing the element u in H. In addition, sometimes when we will refer to formula 
(3.2) , we will denote its numerator by A{u), while the denominator is already denoted 
by q{u).

Rem ark 3.3. As already explained in Remark 3.2 (ii), generally, for an arbitrary fuzzy 
set, x ~i y x~ fi y,while the implication holds if we consider the grade fuzzy set 
Ji. Indeed, if x ~i y, then x€ a o bif and only if and therefore Q{x) = Q{y),
implying that q{x) = q{y), and moreover A{x) = A{y). This leads to the equality
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= n(y). By consequence, based on Remark 3.2 (iii), it holds x j/, with respect
to Jl.

Example 3.3. Let us consider now a total hnite hypergroup / / ,  i.e. o =  / / ,  for 
all x, y€ H. It is easy to see that x ~ ey for any x, € H, meaning that ćce =  H, for
any x € H.Thus, a total hypergroup is not reduced. What can we say about the fuzzy 
reducibility with respect to the grade fuzzy set J17

For any u € / / ,  there is

Ji.(u) \ h \ 2 W \  

\ H \2

1
W\-

Since, x~0 Vfor any x, y€ H, it follows that ~ /0 for any € H. Then, it 
is clear that J7(x) =  y(y), for all x,y € H, implying that for all € H.
Concluding, it follows that any total finite hypergroup is neither reduced, nor fuzzy 
reduced.

Based now on Remarks 3.1 and 3.3, the following assertion is clear.

Corollary 3.1. / / ( / / ,  o) is a not reduced hypergoup, then it is also not fuzzy reduced 
mth respect to the grade fuzzy set Jl.

Before we start to examine reducibility for particular types of hypergroups, we will 
present an easy result related to the fuzzy reducibility of a subhypergroup of hyper- 
groups.

Proposition 3.1. A subhgpergroup (K,o) of a fuzzy reduced hypergroup o) is a 
fuzzy reduced hypergroup.

Proof. Let the element a be an arbitrary element that belongs to the set K, where 
K C  H. Then the element a also belongs to H, and since (H, o) is fuzzy reduced there 
is cife =  {a } i.e., (K,o) is a fuzzy reduced hypergroup, too. □

Proposition 3 .2 . Let (H, o) be a proper complete hgpergroup and consider on H the 
grade fuzzy set J7.Then ~ C ~ /e (mth respect to the fuzzy set

Proof. By the dehnition of the grade fuzzy set one obtains that

Ji(x) =  t- :— r, for any € (3.3)
I

Take now x,y€ Hsuch that x ~  y.There exists gx € such that € Agx, thereby
Ji(x) =  J1 (y)and by Remark 3.2 (iii) we have x y. Moreover, by Proposition 2.17
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there is x yand by Remark 3.1 we get that x ~ /0 Concluding, we have proved 
that x~ y => x~/e y,with respect to /I  □

Theorem 3 .1 . Any proper complete hypergroup not fuzzy reduced voith respect to the 
grade fuzzy set fi.

Proof. Since ( // , o) is not reduced hypergroup, there exist elements 7  ̂ / / ,  where
a,b € H such that a ~  b.By the Proposition 3.6, a ~ e implies a ~ / e meaning that 
( // , o) is not fuzzy reduced with respect to the grade fuzzy set fi. □

3.1 Fuzzy reducibility in i.p.s. hypergroups

In the following we will discuss the fuzzy reducibility of i.p.s. hypergroups with respect 
to the grade fuzzy set fi. In the previous chapter we proved that those hypergroups are 
reduced.

Theorem 3 .2 . Any i.p.s. hgpergroup is not fuzzy reduced mth respect to the fuzzy set 
fi.

Proof. Since any i.p.s. hypergroup contains at least one non-zero scalar, take arbitrarly 
such a u ESc{H). We will prove that tt 0 and ~ /0 0, therefore |0/e| > 2, meaning
that H is not fuzzy reduced.

First we will prove that, for any u e  Sc(H) there is (0) =  fi(u), equivalently with 
u ~fi 0. For doing this, based on the fact that f(x) “ 7̂7, for all x € / / ,  we show that 
,4(0) =  A(u) and q(0) =  q(u).

Let us start with the computation of q(0) and q(u). If 0 € x  o it follows that y  €  

x _1 o0, that is y = x ~ l and then Q(0) = {(x,y) e H2 \ 0 e xoy} = { (x ,x _1) | x  e  H).
Thereby q(0) = |<5(0)| = n = \H\. On the other hand, by Proposition 2.14, we have
q(u) = n = \H\ (since for any x e  H there exists a unique element such that u
belongs to the set x o y[22]).

Let us calculate now T(0). By formula (3.2) , we get that

-4(0) =  E
(x,y)eQ( 0)

1
X O y  I E

xeH

1
X O X-1

E
aeSc(H)

1 1
a o a _1| ^  \xox~l\1 x<ĆSc(H) ] '

\Sc(H)\+ J2
x$Sc(H)

1
X o x _1|
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Since, for u € Sc(H), 3x $ Sc(H) such that 116x 01  1 fl Ips(x), we similarly get that

A(u) =  |Sc(H)| +
x$Sc(H)

\x O X_1|

and it is clear that ,4(0) =  A(u ), so /7(0) =  li(u). Therefore 0 ~ /i

It remains to prove the second part of the theorem, that is 0 ~ /0 u, equivalently 
with / ! (0 o x) — Jl(u o x ) , Vx€ H.

If x € Sc(H), then u o x€ Sc(H) and by the first part of the theorem, there is 
yu(u O x) — yu(0) =  jl(x) = jl(0 o x ).

If x $ Sc(H), then since Sc(H) C IpS(a), for any a ^ Sc(H), it follows that Sc(H) C 
Ips(x), so u 0 x = x ,and then jl(u 0 x) = jl(x) =  0 o x). Now the proof is complete.

□

1

Exam ple 3.4. Let the i.p.s hypergroup be given by the following table [25]

H 0 1 2 3 4
0 0 1 2 3 4
1 1 0,2 1 3 4
2 2 1 0 3 4
3 3 3 3 4 0, 1,2
4 4 4 4 0, 1,2 3

Notice that 0 is the unique scalar identity since 0 o for all G {0,1,2, 3, 4}.
Besides, the element 2 is a scalar with |2 o x = o 2| = 1. Following the proof of 
Theorem 2.13, we have that 0 ~ / e 2. Indeed, 0) =  1'2+|+5'2 =  2). Thus, /x(0) and
jl(2) appear in the same sets jl(aob), where a,G i.e., 0 ~ /i 2. Also, 0ox) = jl(2ox) 
for all xG H.This is obvious for the elements 1,3, 4 since 0ox  = 2ox, for G {1,3, 4}.
Notice that jl(0 o 0) =  jl(2 o 0) =  jl(0) =  2). Similarly, 0 o 2) =  2 o 2). From 
here, it follows that 0 ~ /o 2. Hence, 0 /e = 2/e = {0, 2} i.e., the hypergroup is not fuzzy 
reduced.

3.2 Fuzzy reducibility in non-complete l-hypergroups

In this subsection we study the reducibility and fuzzy reducibility with respect to 
the grade fuzzy set for some particular finite non-complete l-hypergroups defined and
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investigated by Corsini and Cristea [17]. Recall that the hypergroup H is called 1- 
hypergroup if the cardinality of its heart ujh is 1 [13].

Let us describe the procedure of the construction of the above mentioned hypergroup. 
Consider the set H = Hn = {e} U AU B }where { a i , . . . ,  and {b\,... ,bp},
with a, (3 > 2 and n = a + 0 + 1, such that 0 and e  ̂ U Define on H the
hyperoperation ” o” by the following rule [17]:

• for all a e A,ao a = b\,

• for all (ai, a)̂€ A2 such that a\ ^ â , set =  B,

• for all (a, 6) e Ax B ,set a o b = b o a = e,

• for all (6, b')e B2, there is bo b' = A,

• for all a € A, set a o e = eo a = A,

• for all be B,boe = eob = B and

• e o e = e.

H n is an l-hypergroup which is not complete.

We will discuss the (fuzzy) reducibility of this hypergroup for different cardinalities 
of the sets A  and B .

1) Suppose now that n =  \H&\ =  6, where U U |/1| = 2,
f3 = \B\ = 3, AC\B = $, e A\J B with A =  {ai, B =  { 6i, 62, 63}. Thus the Cayley 
table of (//g , o) is the following one

H e a\ 02 b\ 62 63
e e A A B B B

a\ b\ B e e e
b\ e e e

b\ A A A

62 A A

63 A

From the above Cayley table, we notice immediately that the elements 62 and 63 are 
essentially indistinguishable, while the equivalence class with respect to the ~ e of all 
other elements is a singleton. Thereby, H  is not reduced.
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Calculating now the values of the grade fuzzy set //, one obtains (e) = 1 , /} (ai) = 
/}(02) =  0.5, ]1 (61) =  0.467,/t (62) = /7 (6 3) = 0.333. Since = /t(a2), it follows that 
a\ ~ fi a2. But At(aioai) = At({6 i}) = { //(61)}, while /t(aioa2) = /t(B) = {/t(6 i),/t(62)}, 
so /t(ai o ai) 7  ̂ /t(ai o a2), meaning that ai 7 ^ /0  a2, that is ai 7^/e a2.

On the other side, we have 62 ~ /0 63 because they are also operationally equivalent, 
and 62 ~ /» 63 because /t(62) = 7/(63). This is equivalent with 62 ~ / e 63 and therefore H 
is not fuzzy reduced with respect to Jl.

2) Consider now the most general case. The Cayley table of the hypergroup H is 
the following one:

H e ai a2 * - * aa 61 b2 * - ■ bs
e e A A A B B B
a\ 61 B B e e e
a2 61 B e e e
\

61 e e e
61 A A A
62 A A

h A

As already calculated in [17], there is /t(e) =  1, // =  for any t =  1___ while

7̂ (6i) = a T  a/3 T  2/3 ct
, and // (6/) =  4, for any /  2, . . . .  (3. As in the previous

/?(ct2 T  2/3) ’ r
case, we see that any two elements in 5 \ {6 i} are operational equivalent, by consequence
also fuzzy operational equivalent, and indistinguishable and fuzzy indistinguishable 
(because their values under the grade fuzzy set jl are the same). Concluding, this non 
complete l-hypergroup is always not reduced, either not fuzzy reduced with respect to 
T-

Rem ark 3.4. The hypergroups dehned by the above described method are not the 
only one non-complete 1—hypergroups. In the following example we will present a 
non-complete 1—hypergroup which is both, reduced and fuzzy reduced with respect to 
the grade fuzzy set ji.
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Exam ple 3.5. Let the hypergroup (H,o) be given by the following table

H e a b c d
e e a, b a, b c, d c, d
a a, b c, d c e e
b a, b c c, d e e
c c, d e e a, b a, b
d c, d e e a, b a, b

Notice that it holds that c d, but ce ao while o which shows that 
and consequently, c ^ ed. Since the rows corresponding to the elements a, b and c are 
different, those elements have singleton equivalence classes with respect to the essential 
indistinguishability. Hence, (H, o) is a reduced hypergroup.
By calculating the values of the elements x € under the grade fuzzy set /c, one 
obtains Jl(a) = jl(b) = jl(d) =  i ,/!(e ) =  1,/I(c) =  §. Since the first two rows are the
same, then we get that jl(c o x) = jl(do x),for all x € However, e o b), 
while jl(d)does not belong to the same set. Hence, c r>Ofe Similarly we prove that for
arbitrary two elements x,ye Hthere is x iofoy, which finally gives that We
conclude that the hypergroup (H, o) is fuzzy reduced with respect to the grade fuzzy 
set jl.

In the following we will show some results regarding the fuzzy reducibility in cyclic 
hypergroups. Again we will consider the fuzzy reducibility with respect to the grade 
fuzzy set jl.

T heorem  3.3. [1] There are only five commutative single power cyclic hypergroups of 
order two up to isomorphism.

Al-Tahan and Davvaz [1] listed all such hypergroups, with H = {a,b} as follows

Proposition  3.3. All commutative single power cychc hypergroups of order 2 except 
the total hgpergroup are fuzzy reduced withrespect to the grade fuzzy set

Proof. Since Davvaz and Al-Tahan listed all commutative single power cyclic hyper- 
groups of order two, easy calculations of jl(x)for all x e  prove this proposition. □
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Notice that, except the total hypergroup, all other hypergroups listed above are 
reduced hypergroups. Let us show the fuzzy reducibility of a particular single power 
cyclic hypergroup of order 2.

E x am p le  3 .6 . Let the hypergroup (H, o) be given with the following table

o a b
a H H
b H b

(3.5)

Here, /j,(a) =  \,(x(b) =  |. Since /j,(a 0 b) =  {y , |} ^  /j(b o b) =  |, then a oof o b, which 
immediately gives that cife =  {a } ,6 /e = {6}.

In the next example we will present a fuzzy reduced cyclic hypergroup which is not 
s-cyclic, nor single power cyclic.

E x am p le  3 .7 . Let (H, o) be the following hypergroup

O 1 2 3 4
1 1 1 1,2,3 1,2,4
2 1 1 1,2,3 1,2,4
3 1,2,3 1,2,3 1,2,3 3,4
4 1,2,3 1,2,4 3,4 1,2,4

(3.6)

Using easy calculations, we obtain that /I(3) =  /Z(4) =  |j-, which shows that 3 4.
However, ]j(3 o 3) =  {Jy, ^  //(4 o 3) =  {Jy}- Thus, 3 oofi 4, implying that 3 oofe 4, 
thus the hypergroup (H, o) is fuzzy reduced with respect to the grade fuzzy set jl.

Let us present an example of a non-fuzzy reduced hypergroup which is a join space.

E x am p le  3 .8 . Let p be a reflexive and symmetric relation given on the set H = 
{x,y,z} with: p =  {(x,a;), (y,y), (z,z), (x,z), (z,x), (y,z), (z,y)}.
Let us consider the hyperoperation o given on the H with:

V(x, y) € H2, x o x = Lx, x o y = Lx U Ly.

In the previous chapter we proved that the hypergroup (Hp, o) is a reduced hypergroup. 
Let us form the Cayley table of a hypergroup for an easier computation of the grade
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fuzzy set for any x e
o X V z
X X , 0 H H

y H y,z H
Z H H H

(8.7)

Calculations give that Jl(x) =  js  =  jl(y), which implies that x ~ / e Besides, 
jl(xoa) = jl(y°a) and jl(aox) = jl(aoy), for any a e {x,y,z}.  Hence, the hypergroup
(H, o) is not-fuzzy reduced.

3.3 Fuzzy reducibility in Corsini hypergroups

The intent of this section is proving that a Corsini hypergroup (H, o) is not fuzzy 
reduced with respect. to the grade fuzzy set jl. For doing this, first we present. some 
properties regarding the hyperproduct.s x% o x%, wit.h x% e H. For a finite hypergroup 
H wit.h n elements, we will denote its cardinalit.y by n.

Definition 3.3. [29] Let T = (H\ {Ai}i) be a hypergraph, i.e., for any i,Ai e V(H) \ 
0; IĴ  A ( i )  = H for any xe H.Set E(x) = The hypergroupoid Hr = (H, o)

vohere the hgperoperation o is defined by:

V(x, y)e H2, xoy

is called a hgpergraph hypergroupoid.

Definition 3.4. [15] The hgpergroupoid Hr satisfies for each (x,y) e H2, the follotmng 
conditions:

1. X o y = x o xU y o y,

2. xe x o x,

3. ye x o x ifand only if xe yo y.

Theorem 3.4. [15] A hypergroupoid (H,o) satisfging the conditions in Đefinition 3.4 
is a hgpergroup if and only if also the follounng condition is valid:

V(a, c )e H 2co c o c \ c o c C a o a o a .

Proposition 3.4. Let (H, o) be a Corsini hgpergroup mth n elements. If an element 
Xi appears in exactly k hgperproducts Xjo Xj, j = 1,2,... ,n, then q(xf) =  2 — k2.
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Proof. Let, .r, be an arbitrary element from H =  { :ri, x2, x:i, . . . ,  xu} which appears in 

k hyperproducts Xj o Xj, for some j  =  1 , . . . ,  n. By the dehnition of the hyperoperation 

of a Corsini hypergroup, it follows that .r, appears in every hyperproduct Xj o x/,:, with 

k e  { 1 , . . .  ,n } . For one hxed k, because the commutativity, Xi appears in n +  n — 1 

hyperproducts. The sum of all such cases is:

(2n -  1) +  (2n -  1) -  2 • 1 +  (2n -  1) -  2 • 2 +  . . .  +  (2n -  1) -  2 • (k -  1) =

(2n -  1) • k -  2(1 +  2 +  . . .  +  k -  1) =  (2n -  1) • k -  {k -  l)k =  2nk -  k2.

□

P rop osition  3 .5 . The surn of all cardinalities of Xi o Xi ruith Xi G H when \H\ is odd 
(even) is an odd (even) nurnber.

Proof. Let \H\ =  n be an even number. If |.r, o .r,| =  1, for every .r', e H, then 

Yfi \xi ° Xi\ =  1 - n =  n which is an even number. Let add k elements to a hyperproduct 

XiOXi,k < n — 1. In that case, by the property 3 of the dehnition of the hyperoperation 

” o ” , we have to add the element .r, to k— hyperproducts Xj o Xj. All together, we 

add k +  k =  2k elements, which is again an even number. Continuing this process, so 

adding an arbitrary number of elements to any hyperproduct .r', o :r,, we always get an 

even number. Summing arbitrary even numbers, we obtain at the end an even number. 

The proof is analogous in the case when n is an odd number. □

P rop osition  3 .6 . Let (H , o) be a Corsini hypergroupoid of cardinalitg n. The nurnber 
of all possible different surns of the cardinalities of the hgperproducts Xi o Xi,Xi € H , is
n?—n  _ i_  i  

2 ' L'

Proof. The proof will be performed using the mathematical induction. For hypergroups 

of cardinality 2, the property is easily satished, because if H contains two elements, 

we have exactly two possibilities. The hyperproducts x o x are singleton, or equal to 

H. In the hrst case the sum of the cardinalities of Xi o Xi is 2, while in the second

case the sum is 4. Thus, the number of the different sums is 2, i.e. +  1. Assume

that for \H\ =  n the number of the different sums is equal to 1L—21 +  1. Let us prove 

that the claim is valid for \H\ =  n +  1. In this case we have to analyse only the 

hyperproduct xn+\ o xn+\. If xn+\ o xn+\ =  {x ra+i} , then we have +  1 possible 

sums, i.e. the number of sums is the same as in the inductive case. The other cases are:

xn+i o x n+i =  {xn+i,Xi},xn+i o x n+i =  {xn+i,Xi,Xj}, . . .  ,x n+i o x n+i =  H. It gives n
2

sums more, which is fmally +  1 +  n, i.e. number of possible sums when \H\ =  n +  1 

is equal to r̂a+1̂  ~ r̂a+1̂ +  1, which proves the proposition.

□
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Rem ark 3.5. Let (H,o) be a Corsini hypergroup of cardinality There are at least
2

+ 1 Corsini hypergroups of order n up to isomorphism. Since the hyperproducts
2

x o x,x e H completely determine the hypergroup, it folows that + 1 different 
sums define at least as many different hypergroups. One sum can form more different 
tables, and in case when n >3 the number of hypergroups is greater.

Proposition  3.7. Let (H,o) be a Corsini hypergroup of cardinahtg n. element
Xi appears in k hgperproducts Xj o xj, and if we assume that the cardinahties of those 
sets are, respectively m\, m2, . . . ,  mk, t h e n

ia(xf)

-L  + -*- + .7711 7712 . + —  + 2 • y771fc 1 /  ^
7=1,

2 nk — k2

1
Xi O Xj  |

Proof. According to definition of the fuzzy grade set p and Proposition 3.4, the result 
is clearly satisfied. □

Rem ark 3.6. If two elements of a Corsini hypergroup have the same number of ap- 
pearances in some hyperproducts Xj o Xj, and the cardinalities of those hyperproducts 
are the same for both elements, based on Proposition 3.7, then their values under the 
grade fuzzy set Jt are the same. Hereinafter, we will say that elements with this property 
are in the same formation.

Proposition  3.8. In any Corsini hgpergroup (H, o ) , the fuzzy operational equivalence 
implies the fuzzy inseparabilitg.

Proof. Let x, ye Hbe two arbitrary elements in H such that x ~ /0 i.e., p(x o
Jl(y o a), for Va e H. It means that:

ft(xor U f l o a )  =  oy(Jaoa)

Jl(x o x )U Jl(a o a) = oy)(j o a).

Since this equality is satisfied for every set Ji(a o e it follows that o 
Jt(y o y)and contains both Jt(x)and Jt(y)by property 3. of Definition 3.4. If =
Jt(y), then clearly x ~ /j y. Let us consider now the case when f  Jt(y). Suppose 
that Jt(x) e Jt(c o d) = Jt(c o c)U Jt(d o d). Let us take Jt(x) e Jt(c o c). It follows 
that, for some z e c oc,Jt(x) = Jt(z). The equality Jt(x o x) = Jt(y o y)  means that 
[Jt(l) \ l e  x o x} =  {Jt(k) \ k e  y o y],i.e., for every e x o there exists e y o 

such that Jt(l) = Jt(k). Now, since Jt(x) = Jt(z) e Jt(x o x), Jt(x) e Jt(x o x), and 
Jt(x o x) = Jt(y o y),we conclude that Jt(z)e o Thus there exists e y o such
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that jl(z) = jx(l). But ji(z) € jl(c o c),so 11(1) e o c), with l e o which finally 
gives jl(y) e jl(c o c). The converse implication can be proved taking jl(y) e jl(c o c) 
and proving that ju(a;) e jl(c o c).This shows that and jl(y) appear in the same 
jl(c o c). Finally, according to the definition of o it is easy to prove that the 
previous equivalence implies the fuzzy inseparability. □

Proposition  3.9. Let (H, o) be a Corsvni hypergroup of cardinalitg n. Ifx is an element

1

such that xox is a singleton, o { x } , thenâ x \x o a\
2n— 1

mth ae

Proof. Using Proposition 3.4 we easily get that q(x) 2n — 1. Since x appears in every 

product x oa,a e H , and the commutativity holds, then = 1 + 2 • ^
â x

which clearly gives the formula. □
\x o a\

Using this result, we can state sufficient conditions such that two elements in a 
Corsini hypergroup are fuzzy essentially indistinguishable.

Proposition  3.10. If there exist tiuo elementsx,y in a Corsini hgpergroup o) such 
that x o x = x and yo y = y,then x ~ / e y.

Proof. Using Proposition 3.9 this obviously holds, because jl(x) = jl(y). □

Proposition  3.11. If there exist two elements x,y in Corsini hgpergroup (H, o) such 
that x o x  =  y o y  = H, then x~ /e y.

Proof. Since xox = H, based on condition 3 of Definition 3.4 it follows that x appears 
in all hyperproducts z o z, with z e H,and similarly holds for y. So x and y are in the 
same formation. According to Proposition 3.7, we have jl(x) = jl(y), so x and y are 
fuzzy inseparable. Besides, p(x o a) = p(y o y({x \ x e / / } ) ,  which implies the 
fuzzy operational equivalence. Therefore, x ~□

Theorem  3.5. Any B-hypergroup is not }uzzy reduced mth respect to the grade fuzzy 
set jl.

Proof. Regarding to the definition of a B-hypergroup, we have \xox\ =  1 and \xoa\ = 2 
for every x /  a, so A(x) =  1 + 2 • (n — 1) •  ̂ =  n.Using Proposition 3.4, we know
that q(x) =  2 n — 1, which clearly gives that, for any x e =  Hence, two
arbitrary elements in a B-hypergroup are fuzzy inseparable. Besides, jl(xoa) = jl(yoa), 
for any ae Hsince jl(x) = jl(y) for two arbitrary elements from H, and jl(x o a) =
jl({x,a}) = {jl(x),jl(a)}. □
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Proposition 3.12. Let (H,o) be a Corsini hypergroup with \H\ > 2. There always 
exist two elements x,y€ Hsuch that jl(xo o

Proof. We will split the proof in some cases. Using Propositions 3.10 and 3.11 we can 
eliminate the cases when there exist x,y  € Hsuch that xox  and o are singleton or 
equal to H .It remains then to consider other three cases.

1. There exists x € Hsuch that x o x = H.

2. There exists x € Hsuch that x o x = x,

3. The hypergroup doesn’t contain any element x such that is equal to x or H.

Case 1. Without losing the generality, assume that H xn} and xnoxn
H. This means that any xz £ H belongs to o that implies xn € r, o x „  for any 
i = 1,2,... ,n.
Subcase 1.1. If XiOXi = {xi,xn},i =  1,2, . . .  ,n— 1 and xnoxn = H, then by Proposition 
3.7, we know that fi(xi) is the same, for all i =  1,2 , . . . ,  1. This also implies that 
Jl(xi o x\) = fl(x2 ° x2) =  • • • = y(xn-i o xn-\), which concludes the result.
Subcase 1.2. Extending the previous subcase, that can be considered as a ” ,
we can analyze now the situation when we add another element Xk, to the
hyperproduct Xi o x̂ . This leads to have Xk° =  o {xk, Xi, xn}, which clearly 
gives ]l(Xi o Xi) = jl(xk ° Xk), which proves the proposition. Continuing the process, we 
can extend now this subcase into two ways:

• by adding another element to a hyperproduct xox,  with € {xi, Xk, xn} and 
again we obtain the conclusion of the result, or

• by adding a different element xi to one of the hyperproducts Xi o Xi or Xk o Xk-
Suppose that we add it to Xi o x̂ . Thus we get o = {xi,Xk,Xi,xn},Xi o 

Xi = {xi,Xi,xn},Xk o Xk =  { Xk,Xi,xn}, meaning that xi and Xk are in the same
formations, so fl(xk) =  h(xi)and thereby y(xk o Xk) =  o

Continuing this process by the above described procedure, we will always get two 
distinct elements such that Jl(x o x)=Jl(y o y). The process is hnite, since we stop when 
we get two hyperproducts x o x = H.

Case 2. There exists Xi€ Hsuch that o Xi. First, the ” ’ is when
all the other hyperproducts x o x ,with x € } , contain two elements. This is 
possible only if the cardinality of H is odd. If the cardinality of H is an even number, 
the ” 6ase case” is when one hyperproduct Xj o Xj, with j i, has three elements, and 
all the other hyperproducts x o xhave exactly two elements. The value Jl(xi) of all
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elements Xi such that \xio x̂ \ =  2 is the same. Repeating the same procedure as in 
Case 1, we will always obtain two elements x and y which satisfy the result.

Case 3. There doesn’t exist Xi such that o =  nor o = Xi. The ” 6ase 
cases” are exactly the same as in the second case and they depend on the parity of 
the cardinality of H. For example, in the case when cardinality is an even number, 
we can set hyperproducts as: X\o x\ =  o = {x\,X2}, 13 o r 3 =  r 4 o r 4 =
{x$, x4},. . . ,  xn_i oxn_i = xnoxn =  {xn-\, xn}.The values of all are the same for

alH € { 1, 2, . . . ,  n},so y(xiOXi)are also the same for e { 1, 2, . . . ,  In the case when
the cardinality is an odd number, we can form hyperproducts Xi o Xi as in the previous 
case for i =  2 , . . . ,  n — 1, but take X\ o x\ =  = {xn,X\}. This case 
reduces to the hrst case, too. Using already mentioned procedure of constructing other 
Corsini hypergroups, we will always get two elements x,y such that y(xox) =  y(yoy).

□

Let us notice that the procedure described above allows us to construct all hnite 
Corsini hypergroups.

Theorem  3.6. Any Corsini hypergroup is not fuzzy reduced with respect to the grade 
fuzzy set jl.

Proof. According to Proposition 3.12 we can always hnd two elements x and y such 
that fl(x o x) =  ji(y o y). This implies the fuzzy operational equivalence of these two 
elements. From here, according to Proposition 3.8, we conclude that they are also fuzzy 
inseparable. Hence, in any Corsini hypergroup there always exist two elements in the 
same equivalence class with respect to the fuzzy essential indistinguishability, which 
gives that the hypergroup is not fuzzy reduced, with respect to the grade fuzzy set 
ji. □

Rem ark 3.7. Do to a manner of construction of Corsini hypergroups, showed in the 
Proposition 3.12, it is easy to conclude that the inhnite Corsini hypergroup is also not 
fuzzy reduced with respect to the jl.

In the next example we will show non-fuzzy reducibility for the particular Corsini 
hypergroup.
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Exam ple 3.9. Let (H, o) is given by the following table

o 1 2 3 4 5
1 H H H H H
2 H 1, 2 1, 2, 3 1, 2, 4 1, 2, 5
3 H 1, 2, 3 1, 3 1, 3, 4 1, 3, 5
4 H 1, 2, 4 1, 3, 4 1, 4 1, 4, 5
5 H 1, 2, 5 1, 3, 5 1, 4, 5 1, 5

(3-8

Since the elements 2 and 3 are in the same formations, then /I(2) =  /7(3). Precizely, 
fi(2) = 2 +6 ]36+9 5 • The values of 2 and 3 under the grade fuzzy set are equal, which 
implies that 2 3. Also, /7(2 o x) =  /r(3 o x), with x e H which is easy to conclude
since the values /t(2) and ju(3) are equal. Hence, 2 3. Finally, 2/e — 3/e — {2, 3},
i.e., H is not fuzzy reduced.

Exam ple 3.10. On the set H =  { 1 ,2 ,3 , . . . ,  rz} let define the hyperoperation by 
x op y =  x op xU y op y, where x opx = {z \ and the relation p is defined as 
xpy x < y [59]. Then (H, op) is fuzzy reduced with respect to the grade fuzzy set 
/L

Indeed, note that io n  = {1,2,3,.. .  ,max{i,n}}. Since 1 is the smallest element 
in the set H, then 1 o i =  i o 1 = {1,2, . . . , ž } ,  for any e Here, 1 appears in 
any hyperproduct, so (/(l) =  n2, and the cardinalities of the sets where 1 appears are: 
1,2 ,n, respectively. Similarly, 2 o i =  o 2 = {1,2, 3 , . . . ,  and 2) =  n2 — 1,
because 2 doesn’t appear only in the hyperproduct 1 o 1. The element 2 appears in 
the sets of cardinalities 2,3,4,... ,n — 1 respectively. For an arbitrary element k, we 
can conclude that it doesn’t appear in hyperproducts j o i and o where < k. 
Cardinalities of the sets where k appears are 1, . . .  because k appear in every
ioj, where i or j are greater than or equal to k. The set of cardinality n where k appears 
is every set io n,for any i< n. Using the commutativity we conclude that we have a
2 n — 1 such sets. Similarly, the set of cardinality n — 1 where k appears is every set 
io(n — 1), i < n—land the number of them is 2(n — 1) +1. Continuing the procedure, we 
get that the set of cardinality k where k appears is k and the number of them is
(2k—l). Calculating A(k), we get that k appears in (2k—l) + (2(k + l) — l) + . . , + (2n—l) 
hyperproducts, which finally gives:

p(k) =
{  • (k + k — 1) + zz/j(k + l + /c — 1 — 1) + . . .  + ~(n + n — 1)

(2k -  1) + (2k + 1) + (2k + 3) + ... + (2n -  1)

By summing and arranging members we get =  ■ BL simPle
calculations it can be proved that p(k + 1) < ]i(k), hence k and k are not fuzzy
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essentially indistinguishable. From the previous inequality we have //(1) > /!(2) >
.. .  > jl(n) so the equivalence class of any element in is a singleton. Hence, (H, o) is 
fuzzy reduced with respect to the grade fuzzy set

Remark 3.8. Notice that the previous hypergroup is not a Corsini one, but it satisfies 
the first two conditions of Definition 3.4.

Proposition 3.13. [20] / /  pq and /J2 are the grade fuzzy sets of Hx and H2, and fi is 
the grade fuzzy set of the direct product Hx x  H2 then fi(x,y) jl2(y),x,y H.

Proposition 3.14. Let (H, oj)  and (H, o2) be non-fuzzy reduced hgpergroups con- 
structed on the support set H mth at least two elements. Then the direct product 
(H x  H,oj x  o2) is a non-fuzzy reduced hypergroup with respect to the grade fuzzy set
jl-

Proof. For two elements a and b, we know that y(a o 6) = {y(x) o Since
(H,Oi) is not fuzzy reduced, assume that X\,x2 are two elements such that X\ ~ fe x 2, 

i.e. jl\(x\ oj a) = jl\(x2 ô  a), for all a e H. Also, jl\(x\) and jl\(x2) appear in the 
same jl\(a o b),a,b e H. Similarly, since (o2) is not fuzzy reduced, let y\ and y2 

be elements in H such that they are fuzzy essential indistinguishable. Our goal is to 
prove that the ordered pairs (.ri,yi) and (x2 ,y2) are fuzzy essential indistinguishable. 
Since {;/•], jt/i)° ) x °2 (a,b) =  (xi o  ̂ a,y\ o2 b), it follows that /I((j"i, yi)o-i x o =
{jl\(x) ■ jl2(y)\x e X\ o\ a,ye y\ o2 b). Denote the last set with A and the set 
y ((x 2 ,y2)°\ x o2(a,b)) with B. Since X\ ~ fo we have ô  a} =
{jli(y) -y  e x 2o\ a},and y\ ~ fo y2implies {jl2(x) \ x e y\o2 b} = {jl2(y) | y e y2 o2 b},

meaning that A = B. This proves the fuzzy operational equivalence of the correspond- 
ing elements. For the proof of the fuzzy inseparability, let a, c be elements from H 
such that jl\(x\) e jl\(a ô  c). From here, due to the fuzzy inseparability in 
jl\(x2) belongs to the same set. On the other side, let b,d be elements from H such 
that jl2(y\) e jl2(bo2 d), from where we conclude that jl2(y2) e jl(bo2 đ). Using the last 
two implications, we get:

jl\(x\) ■ jl2(y\) e {/ii(x) • jt2(y) : x e a ox c,y e b o2 d} =

{jl(x, y) : x e a ox c,y e b o2 d} = jl(a ô  c, b o2 d)

This means that jl(x\,y\) e ji(a o  ̂ c,b o2 d). The above mentioned implications show 
that jl(x2,y2) belongs to the same set. Similarly, one proves the converse implication. 
Hence, (x\,y\) and (x2,y2) are fuzzy inseparable and therefore, o^) and o2) are 
not fuzzy reduced.

□
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The converse of Proposition 3.14 doesn’t hold, as we can see in Examples 3.11 and 
3.12.

Exam ple 3.11. Let (H,oi) and (H,o2) be hypergroups, where the hyperoperations 
” oT ’ and ” o2 ” are defined by the following tables.

°1 a b c d
a a a a, b, c a, b, d
b a a a, b, c a, b, d
c a, b, c a, b, c a, b, c c, d
d a, b, d a, b, d c, d a, b, d

°2 a b c d
a b b a, b, c a, b, d
b b b a, b, c a, b, d
c a, b, c a, b, c a, b, c c, d
d a, b, d a, b, d c, d a, b, d

Here, we will consider fuzzy reducibility with respect to the grade fuzzy set

By easy calculations, we get: j l i ( a )  = ^,j |,/Ii(c) =  = |j. We can
notice that the only rows which are the same are those corresponding to a and b. This 
implies a b, which easily gives a~/0 b,but here, jl(a) belongs to jl(aoa), while jl(b) 
does not belong to it, so a b. Hence, a ^  It is easy to see that except a and b 
all other pairs of elements are not fuzzy operational equivalent, which, together with 
a oofeb implies that Xfe =  {x} ,  for all xe H.Hence, (H, o )̂ is fuzzy reduced.

Regarding (H, o2), due to the isomorphism of hypergroups, we get the same values of 
the elements under the fuzzy grade 'jl2. At the same way as for the previous hypergroup, 
we can conclude that (H, o2) is fuzzy reduced.

Here, (a,a) ~ /0 (b,b), because jl((a,a)o\x o = ji2(y) e ô
m,y e ao2n} = {ji\(x) ■ ji2(y)\ jl\(x)e {M> M e { i M ’ M } } ’ where 
{ a,b,c,d). This set is equal to jl((b,b)ô x o

Further more, jl(a, a) = jl\(a) ■ jl2(a) = |j- • | = jl(b, b), which ensures that (a, a) ~ fA 
(b,b). Hence, we got a non-fuzzy reduced hypergroup as a direct product of two fuzzy 
reduced hypergroups.

Exam ple 3.12. Let (H,o\) and (H, o2)be hypergroups, where the hyperoperations 
” oj ” and ” o2 ” are defined by the following tables:

°i a b c
a a, b a, b H
b a, b a, b H
c H H c

°2 a b c
a a a H
b a a H
c H H H
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Easy calculations of the fuzzy grade sets /7i and //2 show that the first hypergroup 
(H, oj )  is not fuzzy reduced, while (//, o2) is fuzzy reduced with respect to the grade 

fuzzy set Jl.As in the previous example, it can be shown that ( ) ~ / e (a,a), which
proves the non-fuzzy reducibility of ( / /  x / / ,  x o2).

Proposition  3.15. The direct product of two Corsini hypergroups is non-fuzzy reduced 
with respect to the grade fuzzy set Jl.

Proof. Since an arbitrary Corsini hypergroup is not fuzzy reduced according to Theorem 
3.6, using Proposition 3.14 it follows that the direct product of two Corsini hypergroups 
is not fuzzy reduced. □

C orollary 3.2. The direct product of a Corsini hgpergroup and a total hgpergroup is 
non-fuzzy reduced with respect to the grade fuzzy set Jl.

Proof. This is a direct consequence of Theorem 1.2. □

As we have already mentioned, the fuzzy aspect of reducibility could be investigated 
in two directions. Until now, we have studied indistinguishability between the images 
of the elements of a crisp hypergroup through a fuzzy set, i.e., we have studied the fuzzy 
reducibility in hypergroups. In the following we will briefly explain the second approach 
in fuzzyfication of the reducibility concept, i.e., we will consider the reducibility in 
fuzzy hyperstructures. In this case, the indistinguishability is investigated between the 
elements of a fuzzy hypergroup. Fuzzy hypergroup is a hypergroup endowed with a 
fuzzy hyperoperation. This approach will be the topic in our further research. In the 
next section we will give a definition of a reduced fuzzy hypergroup and present some 
basic examples.

3.4 Reduced fuzzy hypergroups

In order to define a reduced fuzzy hypergroup, we introduce new equivalence relations 
on fuzzy hypergroup, i.e., on a hypergroup endowed with a fuzzy hyperoperation. The 
relations have the same names as in the crisp case: operational equivalence, insepara- 
bility and essential indistinguishability.

Deflnition 3.5. [22 }Twoelements x,y in a hgpergroup o) are called:

1. operationally equivalent or by short o-equwalent, and write x y, if =
(y o a)(r), and (a o x)(r) =  (a oy)(r), for any e H;
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2. inseparable or by short i-equivalent, and wnte x y, for all a,b e H,x e
supp(a o b) y e supp(a o b), i.e. (a o 6)(x) 7̂  0 (a o 6)(t/) 7̂  0;

3. essentially indistinguishable or by short e-equivalent, and write x ~ e V, if they are 
operationally equivalent and inseparable.

Deflnition 3.6. [22] (H, o) is a reduced fuzzy hypergroup if and only if for any e H 
there is xe =  {x} .



Chapter 4

Reducibility in hyperrings

This chapter deals with the study of the reducibility in hyperrings. We consider different 
classes of general hyperrings and study their reducibility. Also, we determine specific 
relations between equivalence relations in certain hyperrings.

4.1 Reducibility in hyperrings

It is important to stress that in a semigroup (group), the equivalences ~ 0 and are 
exactly the same as the equality relation, meaning that, x ~ 0 x
y and therefore it is not significant to study the reducibility in hyperrings where the 
referential set is equipped with a hyperoperation and an operation. More precisely, in a 
Krasner hyperring or in a multiplicative hyperring it is not worth studying reducibility. 
Thereby, we will study the reducibility only in general hyperrings, where addition and 
multiplication are both hyperoperations.
Let us extend now the concept of the reducibility to hyperrings. For any element e 
we denote by and xf, the equivalence classes of x with respect to the hyperoperations 
© and 0 , respectively, where r e {o,i,e} denotes the type of the equivalence that we 
consider in Definition 4.1. Taking into account that is not worth studying reducibility 
in hyperrings containing an operation, we emphasize that the following conclusions 
regarding the reducibility refer to general hyperrings.

Deflnition 4.1. [21] We say that two elements x and y in a hyperring ( / ? ,©,©)  are 
operationally equwalent, inseparable or essential indistinguishable they have the same 
property with respect to hgperoperations, i.e.

1. x ~ o yi fx0)a  = yQ)a,aQ)x = aQ)y and for all
a G R.

65
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2. x y if x G a © b y e a © band e © <=$■ e © d, for all
a, b,c,d G /?.

3. Moreover, x y if x y and x i y ’

Similar to the hypergroup, we introduce the definition of a reduced hyperring, using 
above defined equivalences.

Deflnition 4.2. [21] 4  hypernng R is areduced hypernng if the equivalence class of 
each element x G Rvnth respect to the essentiallg indistinguishable relation ~ e is a 
singleton, i.e., xe =  {x } for any x G R.

The equivalence class of any x in Rwith respect to the essential indistinguishability 
~ e is obtained as x e = £® n  x® =  (x® f l  f® )  f l  (x® f l  Using previous equality, it is 
easy to notice that, if at least one of the hypergroupoids (/?,©) or (/?,©) is reduced, 
then the hyperring (R, ®, ©) is reduced, too. Reciprocally, if (R, ©, ©) is reduced, then 
the hypergroupoids (R, ©) and (R, ©) can be reduced or not, which will be confirmed 
by the following examples.

Exam ple 4.1. Let (R, ©, ©) be a hyperring defined by the following Cayley tables:

© e a
e R R
a R R

© e a
e e R
a R a

Since (/?,©) is a total hypergroup, based on Example 3.3, it is not reduced. Here, 
a® = e® = {e,a}. However, it is elementary to check that the hypergroup (/?,©) is a 
reduced hypergroup, and a f = {cx},e® = {e}. All together, it gives that ee = {e} and 
ae = {a } which gives that (R, ©, ©) is a reduced hyperring.

Exam ple 4.2. Let the hyperring (R, ©, ©) be a hyperring defined by the next Cayley 
tables:

© X V Z
X R R R

V R y c y c
Z R y c y c

© X V z
X x,y x,y R

V x,y x,y R
Z R R R
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It is elementary to check that the algebraic hyperstructure (R, ©, ©) is a general 
hyperring. Since the rows corresponding to x and y are equal in (R, ©) and they 
appear in the same hyperproducts a © b,it follows that x which implies that 
(/?,©) is not reduced. Similarly, (/?,©) is not reduced hypergroup since y z. But, 
xe =  xf  fl x® = {x, y) fl x =  {x} .  Similarly, ye =  {y}, and ze = {z}, which proves that 
( R, ffi, ©) is a reduced hyperring.

Proposition 4.1. Any subhyperring (K, +, •) of a reduced hgpernng (R, + , •) is reduced, 
as well.

Proof. The result easily follows from the law of contradiction. □

Remark 4.1. A subhgperring of a non-reduced hgperring can be reduced or not. As 
we can see in Example 1.14, the hyperfield (which is a hgpernng, too) ( / / , © ,© )  is not 
reduced, but its hgpendeal (hence the subhgpernng) is a reduced hgpernng.

4.1.1 Some properties of the reducibility in hyperrings

In the following subsections we suppose that the ring ( /?,+, - )  have no zero divisors. 
As we pointed out before, by a hyperring we mean a general hyperring.
Let us first present certain relationships between equivalence relations in particular 
hyperrings.

Proposition 4.2. Let ( / ? ,©,©)  be a general hgpernng, where the hgpergroup (/?,©) 
contains a scalar identitg. Then the essential indistinguishabihtg with respect to the 
hyperoperation ” © ” imphes the essential indistinguishabihtg with respect to the hyper- 
operation ” © ” , i.e., x y =t- xy, for all

Proof. We denote by 0 the scalar identity in (R, ffi). Let x and y be two elements in R 
such that x ~® y, i.e., x © a = y© aand © x © for all e R. This means
that, for any u e R such that u e  x © a,it holds y © Let u belong to a ©
Then, since x = x© 0, it follows that u E a© © 0). Now, using x © 0 = y © 0, we 
get u G a © (y © 0) =  a © y .By symmetry, we can conclude that a © x © and 
x © a = y© a, for all a e R. Hence, x y.

Let us suppose that x G a © bif and only if y a © 6, for any Let c and
d be elements in the hyperring such that x G c © Thus, x G © 0) © Using the 
distributibivity, we obtain x e c Q d ® 0 Q d  = {m © n\m e cQ d,n e 0 Q d}. Since x 
and y appear in the same hyperproducts a © 6, for any R, it follows that y also
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belongs to the same hyperproduct, which gives y e c Q d ( B O Q d ,  i.e., y e cQ d. This 
proves the implication x y => x y. Now the conclusion of the result is clear. □

C orollary  4 .1 . Let (R, ® , ©) be a general hgperring such that (R, © ) contains a scalar 
identitg. If (R, © ) is not a reduced hgpergroup, then the hgperring (R, ffi, ©) is not 
reduced, too.

Proof. If (R, ffi) is not a reduced hypergroup, then there exist two distinct elements x 
and y in R such that x y, meaning that the hyperring (R, ffi, ©) is not reduced. □

Let us now consider the hyperrings of formal series, where the reducibility is strictly 
connected with the reducibility of the general hyperring of coefficients.

P rop osition  4 .3 . Let /ž[[rc]] be the hgperring of the formal series mth coefficients in 
the general commutative hgperring (R,+, -) .  The hgperring ( /? ,+ ,• )  is reduced if and 
only if the hgperring (_R[[x]], ffi, ©) is reduced.

Proof. Let us suppose that the hyperring R is not reduced, i.e., there exist elements 
a and b such that a +  x =  b +  x and x +  a =  x +  b for all x e R and also a and 
b appear in the same hyperproducts c + d, where c, d G R. As a direct consequence, 
the formal series (a, a, . . ., a, . . .) and (b, b, . . . ,  b, . . .) are operationally equivalent and 
inseparable with respect to the hyperoperation ffi. Analogously, the implication holds 
also if we consider the multiplicative hyperoperation. Hence, if R is not reduced, then 
the hyperring (R[[x]],ffi,ffi) is not reduced, too.

Let us prove now that the reducibility in (R, + , •) implies the reducibility in (R[[x]], ffi, ©). 

For that purpose, let us assume that the hyperring R[[x}} is not reduced. Then, there 
exist two formal series (a\, a2, ■ ■ ■, an, . . .) and (bi,b2, ■ ■ ■ ,bn, ...) which are operationally 
equivalent with respect to the hyperoperation ffi. This implies that:

(ai,a2, . . .  ,an, .. .) Q (xi,x2, . . .  ,xn, .. .) =  (4.1)

(bi,b2, . . . , b n, . . . ) Q  (xi,x2, . . . , x n,. . . ) ,  (4.2)

and

(x i, x2, . . . ,  xn, . . . )  +  (a ,̂ a2, . . . ,  an, . . . )  (4.3)

(xi,x2, . . .  ,xn, .. .) +  (bi,b2, . . .  ,bn, .. .),  (4-4)

for any formal series (xi,x2, ... ,xn, . . . )  G R[[a:]]. Using the definition of the hyperaddi- 
tion in (R[[x]], ffi, ©), the previous equalities give that <++£; = bi+Xi and Xi + tti = Xi+bi
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for any arbitrary Xi G R. Hence, R for any elements R G R, which are the coor-
dinates of the considered formal series. Assuming now that the series (a1; • • •, .)
and (bi,b2,... ,bn,...) are inseparable with respect to the hyperoperation ©, it easily
follows that ai and bi appear in the same hyperproducts c + where e so they 
are inseparable with respect to the hyperproduct + on R. Similarly we can prove that 
the essential indistinguishability with respect to hypermultiplication © implies essential 
indistinguishability with respect to the hyperoperation •. We finally get that ( /?,+, -)  
is not reduced, which concludes the proof. □

The next part of this subsection is dedicated to the study of reducibility of hyperrings 
with P-hyperoperations. Here, we consider rings which are integral domains and whose 
ideals are principal, i.e., generated by a single element.

Proposition  4.4. Let ( R, + , •) be a commutative principal ideal domain mth two umts, 
i.e., 1 and —1. / /  P\ = nR, with n€ R,and P2 R, then the structure (R, Pjb P2*) ls
a commutative Hv-nng with P-hyperoperations, which is a non-reduced hgpernng.

Proof. Any principal ideal contains 0, therefore 0 6 Pi. Because the ring R is commu- 
tative, it coincides with its center Z(R), and therefore the set P2 =  R has a non-empty 
intersection with Z(R), so the conditions of Theorem 1.12 are satisfied, proving that 
the hyperstructure (R, P(, P%)is a commutative ring.

Let x and y be distinct elements such that xP()a = yPla for all a in R, meaning that 
x + a + P\ = y + a + P\, i.e., x + a + nR = y nR, for the fixed element G and
any aG R.Since the principal ideal nR is a subgroup, then the equality holds whenever 
x — y G nR. Therefore, the elements x and y are operationally equivalent with respect 
to the hyperoperation Pj" if and only if x — yG nR.

Let x  and y be two elements such that x — G nR. Let us suppose that x  G aP̂ b, 
where a,b€ R.The element x  belongs to a + b nR, i.e., x  = a + b + n- s, whith G 
Since x = y + n• k,with kG R,it follows that y + n- k = a + b + n-s,  meaning that
y G a + b + nR. Hence, y G aPfb. Similarly we can prove the other implication. Thus,

p* p*
x 1 y. Conversely, if x1 y, then it is clear that — G nR = P\. Hence, for any

p*
two distinct elements x, yG R, x̂ e1 yif and only if — G F\.

Now, suppose that x and y are operationally equivalent with respect to the hyper- 
operation P*.Thus xP*a = yPfa, i.e., x ■ a ■ P for any G Using the
property that two principal ideals are equal when their generators are associated, we 
obtain that there exists a unit u such that ya = uxa, and similarly, there exists a unit 
v such that xa = vya. Both together imply that ya = uvya, with uv 1. Since the ring 
R contains only two units, we have exactly two possibilities. If both units u and v are
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the multiplicative identity 1, then we obtain that xa — ya =  0, i.e., ( — y)a 0 which 
implies that x = y. The second case is when — 1 and we obtain ya = —xa, for
any a e R, thus y = —x.

Regarding the inseparability with respect to the hyperoperation P2, we easily see 
that for any x e  R,there is x 2 (— x)and moreover x ~ e3 (—

Based on these two results, it follows clearly that x ~ e (—x), for any which
says that the Hv-ring ( R, Px", P*) is not reduced. □

Example 4 .3 . An example of an Hv-ring with P-hyperoperations satisfying Proposi- 
tion 4.4 can be obtained taking R =  Z, the ring of integers. In this particular case, the 
elements nk and —nk with k€ Z are essentially indistinguishable.

If we restrict the set P2 to non-negative integers, we obtain a reduced hyperring, as 
we can see in the following example.

Example 4 .4 . Let Z be the ring of integers and set P\ =  with Z and Z +, 
the set of positive integers. Then the hyperstructure (Z is a commutative
Hv-ring with P-hyperoperations which is reduced.

It is evident that the conditions of the Theorem 1.12 are all fulfilled, which implies 
that the hyperstructure (Z , Pf, P£) is an ring. Similarly as in Example 4.3, we

P'conclude that x ^ e 1 yif and only if x — y e F\, i.e., — for some Z.

Let us suppose that xP£a = yP£a, i.e., x• • Z + = • Z +, for any Z. Choosing
a =  1, it follows that { xk \ k eZ +} = { yk Z+}. The equality is satisfied only in
the case when x = y. Thus, the Hv-ring (Z, P{, P£) is reduced.

Example 4 .5 . Let ( R , P[*,P%) be a commutative Hv— ring with P— hyperoperations 
such that (R, •) is a group and let P\ be a subgroup of ( +) and P2 = R. Then the
Hv-ring (R, Pj*, P2*) is not reduced.

It is easy to check that the hyperstructure (R, T\*, P2*) is an ring with P-hyper- 
operations. Let us prove its non-reducibility. Indeed, following the procedure explained

P*in Proposition 4.4, we conclude that x ~ e1 if and only if — F\. Hence, for any
two distinct elements x,y e R, such that x — y e there is =  1 T {x,y}.
Taking P2 = Rwe easily get that xP^a = yP2a, for all a e R, and if x belongs to
aP̂ b, obviously also y belongs to it. Therefore, for an arbitrary element x in R, there
is Xe2 = R-

Combining the two results, we get x ~ e y, whenever x — y e P\, meaning that the 
considered Hv-ring is not reduced.
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Example 4.6. Let (R, Pf, P%) be a commutative ring with P-hyperoperations, such 
that (R, + , •) is a field and let Kbe a subfield of R. If K , then the Hv — 
ring (R, P f, Pf) is not reduced.

P*Let x and y be arbitrary elements from R. Analogously to Example 4.5, x ~ e 1 y if 
and only if x — y G P\.

Let us suppose that the equality xP%a = yP£a is satisfied for all a e i.e., xaK  
yaK for any a e R .This is equivalent to xK  = yK, which is satisfied for any x ,y  e

P*It is obvious that x ~ e 1 y, for arbitrary x,y 6

Merging both conclusions, we get that the hyperring (R, P f, P%) is not reduced, since 
any two elements x and yin K  are essentially indistinguishable.

In the latest part of this subsection, we consider the reducibility in hyperrings con- 
taining Corsini hypergroups.

Proposition 4.5. Let (H,o) be a Corsim hypergroup and (H,*) be a B-hypergroup, 
i.e., x-ky = {x,y}  for all x,y e H.Then the hypernng , o) is a reduced hgpernng.

Proof. Based on Al-Tahan and Davvaz [2 ], it is known that, if o) is a Corsini hy- 
pergroup and (H,-k) is a B-hypergroup, then the structure *, o) is a commutative 
hyperring. Kankaras has proved in [44] that any B — hypergroup is a reduced hyper- 
group, which easily gives that the hyperring (//,* , o) is reduced, too. □

Example 4.7. Endow the set R = {x,y,z}  with the hyperoperations © and © given 
by the following tables:

ffi X V Z

X x,y x,y R

V x,y x,y R
z R R z

© X V Z

X X x,y X,  2

y x,y y y,z
Z X,  z y c Z

The hypergroup (R, ffi) is a Corsini hypergroup [2 ] and (R, ©) is a P-hypergroup. 
Here, x © a = y© a for any a G R.Thus, x Also, x and y appear in the same 
hyperproducts, which gives x y.Considering the second hyperoperation, it easily 
follows that x f  =  {x} for any x G R.Hence, (R, ffi, ©) is a reduced hyperring.

Remark 4.2. If we take that (R, ffi) is the hypergroup defined in the Example 4.7 and 
(R, ©) be a total hypergroup, then both hypergroups are Corsini hypergroups, but the 
hyperring (R, ffi, ©) is not a reduced hyperring since xe = ye = {x ,y} .
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Remark 4.3. Let (R , ©) be an arbitrary hypergroup and (R , ©) be a total hypergroup. 
The algebraic hyperstructure (/?,© ,© ) is a general hyperring and its reducibility de- 
pends on the reducibility of a (/?,©). It (/?,©) is a reduced hypergroup, then the 
hyperring (/?,© ,© ) is reduced, too, otherwise, (/?,© ,© ) is not reduced.

4.1.2 Reducibility in complete hyperrings

Before we introduce the definition of the complete hyperring, 
procedure of the construction of a complete hypergroup.

Theorem 4.1. [19] A n y  com p lete  hypergroup m ay be fo rm ed  as

o f  its su bsets, tuhere

1) ( G, •) is a g r o u p .

2) The fa m ily  { A g , \g e  G }  is a p a rtition  o f  i.e . f o r  an y  (pi,p2) + G 2, gi g2, 

th ere is A gi fi A g2 =  0.

3) // (a , b) e A gi x A 92, then  ao b = A gi92.

Deflnition 4.3. [34] L et ( // ,© ,© ) be a h gp ern n g . / / ( / / ,© )  is a com p lete  hgpergroup, 

then  w e say that H  is ffi— com p lete . I f  (H , ©) is a co m p le te  sem ih yp ergrou p , then  w e  

say  that H  is Q —com p lete  and i f  both (//,© ) and  (//,© ) are com p lete , then  w e say  

that H  is acomplete h gp ern n g .

Based on the construction of complete hypergroups, De Salvo [34] proposed a method 
to obtain complete hyperring starting with rings. Let us recall here this construction:

Let (R , + , •) be a ring, and { A ( g ) } geR be a family of non-empty sets, such that:

L Vg, g' G R,  g = f  g =t- A ( g )  n A ( g )  = 0

2 . g £  R  - R = >  \A(g)\ =  1.

Set H R =  l jgefi A ( g )  and define two hyperoperations © and © on H R in the following 
way:
For any a, bG H R, there exist g,g G R  such that a G A ( g ) , b  G A ( g ' ) .  Then set

let us first recall the

the u n ion  H [J
geG

a © b — A(g + g ),a© A(gg ).
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Moreover, it was proved that:

Lemma 4.1. [34] F o r  all g , g  £ R,\/u £ A (g),\ / v  £ A ( g )  w e h ave:

u ® v  =  A ( g +  g' )  =  A ( g )  0 A ( g ' )

u & v =  A ( g g )  =  A ( g )  © A(g)

In [9] Corsini proved that (Hr, ®) and (Hr , ©) are, respectively, a complete com- 
mutative hypergroup and a complete semihypergroup.

Remark 4.4. All complete hyperrings can be constructed by the above described 
procedure, since it is known that any complete semihypergroup (hypergroup) can be 
constructed as the union of disjunct sets A ( g ) , g  £ G.[13]

Theorem 4.2. [34] Hr is a complete hgpernng.

Remark 4.5. The hyperstructure Hr is a general hyperring in the sense of Definition 
1.24, which is also complete.

Notice than any complete (semi)hypergroup is not reduced, but, as we showed in Ex- 
ample 4.2, the non-reducibility of both, multiplicative and additive part of a hyperring 
does not imply the non-reducibility of a hyperring. For that reason, we need to prove 
that if two elements x  and y  from the hyperring R  are operationally equivalent (in- 
separable) with respect to the hyperoperation ©, the same elements are operationally 
equivalent (inseparability) with respect to the hyperoperation ©.

Theorem 4.3. A n y  co m p le te  h g p ern n g  (Hr,@,Q) is n o t reduced.

Proof. Let (Hr,Q,Q) be a complete hyperring. Thereby the hypergroup (Hr,Q) and 
the semihypergroup ( H R,©) are both complete, so both are not reduced. Thence, we 
conclude that there exist a b£ HR such that a ~® b. Now it is enough to prove that 
a b implies ab for a, b£ HR, because in this case fi o® © {a, b } , which
shows that (Hr,Q,Q) is not reduced.

First we will prove that the operational equivalence relation with respect to the 
hyperoperation © implies the operational equivalence relation with respect to ©. Let 
a ,b  be elements from HR such that a© c  = b© for all £ HR. It follows that 
there exist ga,gb,gc £ R  such that a £ A ( g a) , b  £ A (g f )  and c  £ A ( g c). According to 
Lemma 4.1, we have a© c = A (g a Q gc) and 6 © c = A(gt, which leads to the
equality A ( g a Q gc) =  A ( g i Q  gc), equivalently with = g b Q  g c in the group ( , +).
Therefore ga = gb, that implies that ga• gc = gb• gc- Therefore, a Q c  = A ( g a ■ gc) =
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A(gb • 9c) =  A(gi,) © A(gc) = b© c.Similarly, c © © implies that c © c © 6.
This means that a ~® b implies a b for all a, e ///?.

Next we will show that the indistinguishability relation with respect to © implies 
the indistinguishability relation with respect to ©.

Let us suppose a b. This means that a and b appear in the same hyperproducts 
d©e, for d, e e H R.Thus a e A(gd)®A(ge) +=> b e A(gd)®A(ge),w\th gd,ge e Rsuch 
that d e A(gd),e e A(ge). It follows that a e A(gd + ge) b e A(gd + ge), meaning 
that a,b e A(g), with ge R.If we consider now © /, then a e • g{), where 
k e A(gk),l e A(g{). Since a and b are in the same Ag, it follows that b e A(gk-gi) kOl,  
equivalently, be k© l.Similarly, if be k© lthen a e © Hence, a b. □

Exam ple 4.8. Let the hyperring H =  ({a, b, c, d, e}, ©, ©) is defined as follows:

© a b c d e
a a a a a a
b a b, c b, c d e
c a b, c b, c d e
d a d d a d
e a e e d b, c

ffi a b c d e
a a b, c b, c d e
b b, c d d e a
c b, c d d e a
d d e e a b, c
e e a a b, c d

The hyperring ( / / ,© ,© )  is a commutative complete hyperring [32]. Since the rows 
corresponding to the elements b and c are exactly the same in both tables, we conclude 
that b ~® c and b c, which further gives b ~ 0 c, i.e., {b,c}. Besides,
elements b and c appear together in (H, ffi), as well as in (H, ©), whence there is b c, 
thus C = Ci = {b,c}. Hence, be = ce = {b,c} which implies that the given hyperring is 
not reduced.

4.1.3 Reducibility in ( H , R ) — hyperrings

(H,R)— hyperrings were introduced by Mario de Salvo in [34], with the intention of 
generalizing the construction of (H, G)— hypergroups described in [33]. In the following 
we present their construction.

Let (H, o, □ ) be a hyperring and {Ai}ieR be a family of non-empty sets such that:

1. (R, +, •) is a ring.

2. Aqr = H.
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3. For any i ^ je R, fl Aj =  0.

Set K = \J Ai and define on set K  hyperoperations as: 
i6R

for any x,y E H,x ® y = x o y (4.5)

and x Qy = H (4.6)

For any xe A ând y e Aj such that Â  x x H, define

x ® y  = Ak if i + j  = k, (4.7)

x Qy = Am if (4.8)

The structure ( K,© , ©) is a general hyperring, called an ( R)-hyperring. Moreover, 
if co is the heart of the hypergroup (K, ©), then u =  H and © © [34].

In the following we will better describe the operational equivalence and the insepa-
rability in an ( H, /?)-hyperring.

Lem m a 4.2. Let (K, ffi, ©) be an (H, R)-hypernng, tuhere [J  Ai} mth , +, •)
i€R

nng and (H, o, □) a hypernng.

1 . Two elements x and y in A0r = H are operationallg equivalent mth respect to 
the hyperoperation ffi if and only if they are operationallg equivalent mth respect 
to the hyperoperation o on H.

2. Two elements x and y in K\ A0r are operationallg equivalent mth respect to the 
hyperoperation © if and only if they belong to the same subset C

3. T vjo elements x and y in K are inseparable mth respect to the hyperoperation © 
if and only if they belong to the same subset

Proof. 1. Let x,y be in A0r = H such that © © for all e If e Aia,
with ia ^  0/?, then the equality always holds. If e A0r, then © © whenever
x o a = y o a and thus the result is proved.

2. Let x and ybe in K \ H,such that x G Aix and y e Aiy, with ix,iy e R and
consider x© a = y© a, for all ae K .If ae A0r, then © and © Aiy,
therefore x and y are operationally equivalent if and only if ix = iy. If e A0r, for 
example ae Aia, then x Q a = y Q ais equivalent with + + ia, meaning again
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3. Let us consider x y, which is to say x G a © if and only if e a © 6. If 
a,b G v40fi, then a © b = ao band therefore whenever e a o C v40fi. If 
a € v4ia and 6 e v4it with Aia x y4it ^ H x H, then © Aia+ib =  Ai and therefore 
x y whenever x,y  e >4̂ , with i £ R. Combining the two cases, we get that x and y 
are inseparable if and only if they are in the same subset A+

□

Lem m a 4.3. Let (K, ©, ©) be an (H, R)-hyperring, tuhere J  Ai} with (R, + , •) an
i€R

integral domain and (H, o, □ ) a hgpernng. Two elements x and y in K are essentiallg 
indistinguishable mth respect to the hgperoperation © if and only if they belong to the 
same subset Â  C K .

Proof. The proof is similar to the one of Lemma 4.2. The only difference here is in the 
case of the relation ” ~ 0” , where the condition regarding R to be an integral domain is 
fundamental. □

Proposition  4.6. Let (K,@,Q) be an (H, R)-hypernng, tuhere IJ Air with
i€R

( /? ,+ ,-)  an integral domain and (H,<+□) a hgpernng. Then the hgpernng (K,@,Q)  
is not reduced if and only if there exists i£  R,i=f 0«, mth > 2, or the hgpergroup 
(H,o) is not reduced.

Proof. Let us suppose that the hyperring (K, ©, ©) is not reduced. Then there exist two 
elements x and yin Ksuch that x ~ e y, i.e., x y and x y. Based on Lemma 4.2 
and and Lemma 4.3, if x and y belong to the same subset Ai} with i ^ 0r , we conclude 
that \Ai\ > 2. Otherwise, if all sets Ai,î 0 are singletons, then G AoR = H,
which implies that x ~° y and x y,i.e., the structure o) is a not reduced 
hypergroup.

Conversely, suppose there exists iG R\{0/?} such that | A f > 2. Then there exist 
two elements x and y in the set Ai} implying that x ~® y and x y. In other words, 
x ~ e y, signifying that the (H,R)- hyperring © ,© ) is not reduced. Assuming that 
(H, o) is not reduced, let x and y be two elements such that x y. According with 
Lemma 4.2 and and Lemma 4.3, we further conclude that x ~® y. Due to the definition 
of the hyperoperation ©, for any x,y G H ,it easily follows that x ~® y. Hence, x ~ e V, 
i.e., (K, ffi, ©) is not a reduced hyperring. □

C orollary 4.2. If ( / / ,© ,© )  is a not reduced hgpernng, then the (H, R)-hypernng 
(K,ffi, ©) is not reduced, too.
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In the follovving, we will give an example of an ( , /?)-hyperring and show its non-
reducibility.

Exam ple 4.9. Let endotv the set R =  {0 ,a ,6 ,c } with the folloming operations

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

* 0 a b c
0 0 0 0 0
a 0 0 a a
b 0 0 b b
c 0 0 c c

It easilg follows that (R, +, •) is aring. Furthermore, let (H, o, □ ) be a hgperring given 
by the tables

0 c d
c c c, d
d c, d c, d

□ c d
c c c, d
d c c, d

The structure (H,o, □ ) is a general hgpernng [34]. It is easy to check that o) is a 
reduced hypergroup and thus, the hgperring (H,o,D) is reduced, too.

We will endow the set K = [c, d ,ai,a,2, a$, a4,a5, ae}, where A0 = H,Aa = {0 1, 02}, Ab 
{ 03, a4,a5}, Ac =  {ae}, with an (H,R)-hyperstructure by defimng the hyperaddition 
x® y = xoyi f  both x, y belong to H, otherwise, letx®y = Ak, with x e A^,y e Aj and 
k = i+j.  Besides, definexQy = H, wherex,y e H andx(By = Ak withx e Ai}y e Aj 
and k = 1 ■ j.Then the structure (K, ®, ©) is an (H, R)-hypernng.

Let us prove that a\ ~ e +2, i.e., a\© x =  a2 © x for all e Indeed, e
H , a\© x = Aa+o =  a2 ffi x. If xe Aa, ai ffi j4a+a = A0 a2 ffi A0. For
x e A5, a\ffi x =  j4a+6 = Ac =  a2 ffi x.Finally, ffi a2 ffi j4a+e =  Ab for x e Ac.
Due to the commutatimtg of the nng R, xffi a\ ffi a2 for any e Similarly,
a\© x =  a2 © x and x© a\ = x© a2 for any e Thus, a\ a2.

Since xffi yC H ifboth x,ye H = A0 = {c,d},we conclude that the elements a\
and a2 don’t appear in such hgperproducts. All other hyperproducts ffi y are equal to 
some sets Ak, where k e {a, b, c}, with Aa, Ab and Ac bemg disjoint sets. Hence, a\ and 
a2 appear in the hgperproducts which are equal to Aa, so they always appear together. 
Analogously, a\ and a2 appear in the same hyperproducts x Qy. Hence, a\ a2.

Similarlgone proves that a0e = a4e =  a5e =  {a3,a4,a5}. Thereby we conclude that 
the ( H,R)— hgpernng (K,ffi,ffi) is not reduced.
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Conclusions

This thesis deals with the study of reducibility in different algebraic hyperstructures. 

The motivation for our study was given by Jantosciak, who noticed that in a hyper- 

group elements can play the same role with respect to the hyperoperation. He defined 

certain equivalence relations which are the basis for the definition of reducibility. The 

equivalence relations are called: the operational equivalence, inseparability and essen- 

tial indistinguishability. Jantosciak gave the definition of a reduced hypergroup, saying 

that the hypergroup is reduced if the equivalence class of each element with respect 

to the relation ”essential indistinguishability” is one-element set. In the dissertation, 

we have extended the classical notion of reducibility to the fuzzy case, by defining 

new concepts: fuzzy reduced hypergroup and reduced fuzzy hypergroup. We can consider 

the reducibility on a crisp hypergroup equipped with a fuzzy set or in a fuzzy hyper- 

group. In the first case we examine a fuzzy reduced hypergroup, i.e., crisp hypergroup 

that is fuzzy reduced with respect to the corresponding fuzzy set. In the second case, 

using fuzzy hyperproducts, we get reduced fuzzy hypergroup, in other words fuzzy 

hypergroup that is reduced. We have developed the first case and studied the fuzzy 

reducibility in hypergroups. In order to extend the concept of the reducibility to the 

fuzzy case, we have introduced, similarly to the crisp case, equivalence relations called: 

the fuzzy operationally equivalence, the fuzzy inseparability and the fuzzy essentially 

indistinguishability, taking into consideration the fact that now we are working with 

fuzzy sets. A crisp hypergroup equipped with a fuzzy set is called a fuzzy reduced hy- 

pergroup if and only if each element in the hypergroup has singleton equivalence class 

with respect to the relation fuzzy essential indistinguishability.

Moreover, we have extended the reducibility concept to hyperrings, by defining equiv- 

alence relations with respect to the both hyperoperations in a general hyperring. Anal- 

ogously to the hypergroups, we have introduced the definition of a reduced hyperring.

78
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In this Phd thesis we have investigated the reducibility (in both, crisp and fuzzy 
case) for many classes of hypergroups and the reducibility in hyperrings. After the 
preliminaries chapter which contains the basic hyperstructure theory necessary for our 
study, in the second chapter we have presented our results related to the reducibility 
in hypergroups. In the third chapter we have studied the fuzzy case of the reducibility, 
i.e., we have studied the fuzzy reducibility in hypergroups. The fourth chapter deals 
with a hyperring reducibility. After we have extended the concept of the reducibility 
to the hyperrings (in the crisp case), we have investigated the reducibility property in 
certain classes of general hyperrings.

The main results obtained in the dissertation are related to the hypergroups re- 
ducibility. Regarding the crisp case, we have proved that complete hypergroups are 
not reduced, while the hypergroups with partial scalar identities are reduced. More- 
over, arbitrary canonical hypergroups is a reduced hypergroup. Also, we have found 
the necessary and sufficient condition for Corsini hypergroups to be reduced. We have 
concluded that the reducibility of cyclic hypergroups strictly depends of their cardi- 
nality and of the number of generators, too. When it comes to the fuzzy reducibility, 
the complete hypergroups are not reduced, as well as in the crisp case, while i.p.s. 
hypergroups are not fuzzy reduced. We have proved that Corsini hypergroups are not 
fuzzy reduced. We have to emphasize that in all cases the fuzzy reducibility has been 
investigated with respect to the grade fuzzy set Jl. As for the hyperrings, the reducibil- 
ity have been studied only in the crisp case. Using the result about non-reducibility of 
complete hypergroups, we have got the same conclusion for the complete hyperrings. 
Besides, we have determined conditions under which the ( , R)— hyperring is reduced.

Many of the results presented here can be found in the articles Fuzzy reduced, hy- 
pergroups and Reducibility vn Corsini hypergrou, published in the journals ” Mathe- 
matics” and ” AnaleleStiintifice Universitatii Ovidius Constanta, Sena ’ ,
respectively.

The idea concerning our study, which will be the topic of our further research, is the 
second extension of the reducibility concept to the fuzzy case. Our goal is to examine 
the reducibility in fuzzy hyperstructures, especially in hypergroups. In the following 
we give the examples of some fuzzy hypergroups which are reduced.

Exam ple 5.1. Let Hbe a non-empty set and o : x F(H),  where aob =  X{a,6}-
(H, o) is a reduced fuzzy hypergroup.
In [60] can be found the proof that the structure (H, o) is a fuzzy hypergroup.
Let a,b e Hbe the elements such that a ~ 0 b, i.e., (aox)(r) (box)(r) for all x,r e H.
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If we take that x =  a then we obtain that (a o a)(r) (b o a)(r) for all r e H. Since

(a o a)(r) =  X{a}(r)
1; r =  a 

0 ; r / a
(5.1)

then (a o a)(a) =  1. But, (a o a)(a) =  (b o a)(a) =  X{6,a}(a), so ^{6,a}(a) =  1. Also, 

(aoa)(b) =  (boa)(b) =  X{b,a}(b) =  1, which implies that Xa(b) =  1, meaning that b =  a. 
Thus, we obtain that a ~ 0 b if and only if a =  b. Hence, for all a € H,a0 =  {u} and 

thereby ae =  {a } which gives that (H , o) is a reduced fuzzy hypergroup.

E x am p le  5 .2 . Let (H , •) be a group with identity e, and the hyperoperation o : H x 

H —> F(H)  is given with a o b =  Xab• Then the hypergroup (H , o) is a reduced fuzzy 

hypergroup.

Let us suppose that a ~ 0 6, i.e., (a o x)(r) =  (b o x)(r) for all x,r  e  H. By taking that 

x =  e, we get (a o e) =  Xae =  Xa- Now, 1 =  (a o e)(a) =  (b o e)(a) =  Xb(a), thus a =  b. 
Hence, (H , o) is a reduced fuzzy hypergroup.

Based on the previous examples, we aim to conduct our study about the reducibility 

of fuzzy hyperstructures and to find some general results. Also, we intend to extend 

the reducibility in hyperrings to the fuzzy case, studying the fuzzy reducibility for the 

wide classes of general hyperrings.
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