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Introduction

The theory of hypercompositional structures (called also the theory of hyperstructures)
was introduced in 1934 by F. Marty, when he gave the definition of a hypergroup and
presented some of its properties and applications to algebraic functions, rational frac-
tions and non-commutative groups. Hyperstructures represent an independent line of
research, but they are also a tool of investigation in many other fields like: Geometry,
Graphs and Hypergraphs, Topology, Cryptography, Code Theory, Automata Theory,
Probability, Theory of Fuzzy Sets. We may say that the algebraic hypergroups are the
most natural generalization of the classical groups: the binary operation of groups is
extended to a binary multivalued operation, called hyperoperation or hyperproduct,
that associates with any couple of elements of a given set, a non-empty subset of it.
In 1934 F. Marty gave the first example of a hypergroup, which was the motivation
for introducing this concept. The quotient structure G/H, where G is a group and H
is a subgroup of it is not a group, but a hypergroup. In a special case, when H is a
normal subgroup, the corresponding quotient becomes a group, which is again a hyper-
group. Analogously to the notion of a hypergroup, the other generalizations of algebraic
structures have been arised subsequently. The hyperrings are natural generalizations of
rings, where one operation in the ring becomes a hyperoperation. Hyperfield is a hyper-
structure which generalizes the notion of a field. Similarly, the notions of hyperlattices,
hypermodules, etc are introduced. Besides, in [69], T. Vougiouklis introduced the new
class of hyperstructures, so called H,— structures. We may say that H,— structures
generalize the well-known algebraic structures, where the associative and distributive
laws are replaced with their weak versions. These algebraic hyperstructures are the sub-
ject of interest for many researchers nowadays. For a detailed historical development

of algebraic hyperstructures we refer to [32].

The connections between fuzzy sets and algebraic structures were mostly considered
by Iranian mathematicians, where they observed that the composition of the elements
from H does not give a subset, but a fuzzy set on H. Unlike in an ordinary set, where we
have exactly two possibilities: an element belongs to the set, or it does not belong to the

set, in the fuzzy set every element has a certain degree of membership. Fuzzy sets were



introduced by Zadeh in [71], where he introduced the concept of fuzzy set regarding
it as the extension of the notion of the set. In the fuzzy set theory, the membership
function takes the values from the segment [0, 1], while in the classical set theory the
characteristic function can take only two values, 0 and 1. Actually, the fuzzy set is an
ordered pair containing the subset of universe set, and the membership function which
maps elements to the segment [0, 1]. However, we usually use term fuzzy set when we
refer to the membership function.

The fuzzy sets and algebraic structures have been firstly connected in 1971, when A.
Rosenfeld gave the definition of fuzzy subgroup of a group. After twenty-eight years,
B. Davvaz extended this definition, introducing the fuzzy subhypergroup of a (crisp)
hypergroup, which is a fuzzy algebraic hyperstructure. The study of the fuzzy hyper-
structures started only a few years ago, with a paper about fuzzy hypergroups. Then,
in 2009, V. Leoreanu-Fotea and B. Davvaz introduced the notions of fuzzy hyperrings
and fuzzy hypermodules. Very important connection between fuzzy sets and hyper-
groups was established by Corsini, in [16], by defining a hyperoperation as a mean of
fuzzy subsets, obtaining a join space. The other connection, which is very significant
for our research is established via the grade fuzzy set i, introduced also by Corsini [16].
Besides, the grade fuzzy set is used for the definition of a fuzzy grade, which represents
the number of non-isomorphic join spaces and fuzzy sets associated with a given hy-
pergroupoid. The theory of hypergroups associated with fuzzy sets represents a new
research direction which preoccupies researchers in the last two decades. Untill now one
distinguishes three principal approaches: the study of new crisp hyperoperations ob-
tained by means of fuzzy sets; the study of fuzzy subhypergroups (fuzzy sets whose level
sets are crisp hypergroups); the fuzzy hypergroups, i.e., structures endowed with fuzzy
hyperoperations. The overview of this theory can be found in the monograph ”Fuzzy
algebraic hyperstructures: an introduction” written by Davvaz and Cristea [29].

One of the most important concepts in hyperstructure theory are certain relations,
being called fundamental relations. These equivalences play a crucial role in obtaining
quotient structures. We can divide fundamental relations into two groups: the first
group is contained of the relations «, 3,y which are defined on proper hyperstructures
such that the obtained quotient structures (hyperstructures modulo relation) are clas-
sical algebraic structures. The relation « is defined on a hyperring, while the other two
relations ((3,7) are defined on a semihypergroup. Consequently, the resulting quotient
structures are ring and semigroup. Moreover, semihypergroup modulo relation v gives

a commutative semigroup.

The fundamental relations are the smallest equivalence relations such that the quo-
tient structures defined on the support set of a hyperstructure becomes a classical
structures. These relations represent the link between the classical algebraic structures

i



and algebraic hyperstructures, and besides, it could be noted that the classical algebraic
structures impersonate special cases of algebraic hyperstructures. The second group of
fundamental relations consists relations introduced by Jantosciak in [42]. He noticed
that sometimes a hyperproduct on given set does not make a distinction between a
pair of elements of the set. In other words, the elements play exchangeable roles with
respect to the hyperoperation. It inspired Jantosciak to define three relation with the

aim to identify the elements with the same behaviour.

[42] Two elements x,y in a hypergroup (/1, o) are called: operationally equivalent, if
their hyperproducts with all elements in H are the same: xoa = yoa, and aox = aoy,
for any a in [{; inseparable, if 2 belongs to the same hyperproducts aob as y, for all a, b

in H; essentially indistinguishable, if they are operationally equivalent and inseparable.

With the help of these three relations, Jantosciak introduced the concept of re-
ducibility. He defined a reduced hypergroup as a hypergroup where the equivalence
class of each element with respect to the essentially indistinguishable relation is a sin-
gleton [42]. Moreover, he proved that the quotient hypergroup obtained by factorizing
a hypergroup modulo the essential indistinguishable relation always gives a reduced
hypergroup, which he called a reduced form. Motivated by this property, the same au-
thor proposed that the study of reducibility can be splited in two directions: the study
of reduced hypergroups, and the study of all hypergroups having the same reduced
form [42] . The study of the reducibility will be also developed in the PhD thesis to
the fuzzy case in one direction. We will study indistinguishability between the images
of the elements of a classical hypergroup through a fuzzy set. The second direction
is studying the indistinguishability between the elements of the fuzzy hypergroup. In
particular, we introduce the notion of reduced fuzzy hypergroup, which is a fuzzy hy-
pergroup which is reduced, and the notion of fuzzy reduced hypergroup, which is a
hypergroup endowed with a fuzzy set which is reduced. In order to define the concept
of a fuzzy reduced hypergroup, we introduce equivalences: fuzzy operation equivalence,
fuzzy inseparability and fuzzy essential indistinguishability. Further, a fuzzy reduced
hypergroup is defined as a hypergroup where the equivalence class of each element with

respect to the fuzzy essential indistinguishability is a singleton [22].

In the preliminary chapter we present basic definitions and notions related to the
hypergroups, hyperrings and fuzzy sets. In the first part of the chapter we give the
definition of a hypergroup, after which we define all particular types of hypergroups
which are investigated further in the thesis. Therefter, we give the definition of a funda-
mental relation, and introduce the relations 3* and v*, which provide that factorizing a
hypergroup (semihypergroup) by them gives a group (semigroup). Further in the chap-
ter we define all three types of hyperrings. We recall first the hyperring containing an

i



additive hyperoperation and a multiplicative operation, afterwards we present the hy-
perring with an additive operation and a multiplicative hyperoperation, and at the end
we give the definition of a general hyperring, where, both, addition and multiplication
are hyperoperations. We present important classes of hyperrings in order to study their
reducibility later in the thesis. At the end of the chapter we illustrate the definition of
the fuzzy set and explain in detail its connection with algebraic hyperstructures. We
explain here the well known fuzzy set z1, which is used in our study of fuzzy reducibility.
Also, we describe a procedure of construction of the sequence of join spaces and fuzzy
sets associated with a given hypergroupoid. In the same section we recall the definition

of the fuzzy hyperoperation and fuzzy hypersemigroup.

The second chapter deals with the reducibility property in hypergroups. First,
we present the motivation and expose early ideas related to this concept, as it is pre-
sented in the paper of Jantosciak [42], which was the major inspiration for the thesis.
In the first part of the chapter, we present some results related to the reducibility in
hypergroups associated with binary relations [23]. Then we focus on the study of re-
ducibility for several types of hypergroups. In this chapter we present results which are
the subject of the article Fuzzy reduced hypergroup, published in Mathematics, 2020.
by Kankaras and Cristea [45], and the article Reducibility in Corsini hypergroups, by
Kankaras [44]. Then we focus on the study of reducibility for several types of hyper-
groups. In this chapter we present results which are the subject of the article Fuzzy
reduced hypergroup, published in Mathematics, 2020. by Kankaras and Cristea, and
the article Reducibility in Corsini hypergroups, by Kankaras in Analele Stuntifice Uni-
versitatie Onidius Constanta, Seria Matematica in 2021. We prove that any canonical
hypergroup is reduced, and as the consequence, we get that any hypergroup contained
of partial scalar identities (or i.p.s hypergroup) is reduced, too. The properties of i.p.s.
hypergroups presented in this chapter are important for the further study of their fuzzy
reducibilility. Further in the chapter we study reducibility for some particular classes
of cyclic hypergroups, and we show that their reducibility depends on many condi-
tions. Also, we study reducibility for a very important class of hypergroups, called
complete hypergroups, and conclude that any proper complete hypergroup is not re-
duced. We later use this result for the study of reducibility in complete hyperrings.
In the last section of Chapter 2 we give a neccesary and sufficient condition for the
Corsini hypergroup to be reduced. As a consequence of this statement, we get that
the well-known B-hypergroup, which is a special case of the Corsini hypergroup, is a
reduced hypergroup. Also, we determine whether the direct products of hypergroups

containing Corsini hypergroups, are reduced or not.

The third chapter deals with the fuzzy reducibility in hypergroups, i.e., it contains

the study of reducibility in crisp hypergroups endowed with a fuzzy set. In the thesis,



the fuzzy reducibility is studied with respect to the grade fuzzy set ji. In the first part of
the chapter, we are introduced to the concept of fuzzy reducibility, which represents the
one direction how the reducibility concept can be extended to the fuzzy case. Therefter,
we investigate the fuzzy reducibility for several types of hypergroups. The chapter
contains results published in the articles Fuzzy reduced hypergroups and Reducibility in
Corsint hypergroups. We prove that any total hypergroup is not reduced, neither fuzzy-
reduced. Also, we prove that any proper complete hypergroup is not fuzzy reduced,
same as 1t is the hypergroup with partial scalar identities. Later on, we examine
the reducibilility and the fuzzy reducibility for a specific type of non-complete 1—
hypergroups defined by Corsini and Cristea in [17], and we prove that it is not reduced,
nor fuzzy reduced. In the last section we prove that Corsini hypergroup is not fuzzy
reduced with respect to the grade fuzzy set ji. At the end of the section, we consider
the direct product of Corsini hypergroups and prove that the resulting productional
hypergroup is not fuzzy reduced. The chapter concludes with a brief review of reduced
fuzzy hypergroups. This is the second direction of the fuzzyfication of the reducibility

concept, which will be the subject of our research in the future.

The reducibility in hyperrings is the topic of the fourth chapter. At the begin-
ning of the chapter we introduce new equivalence relations and extend the reducibility
concept to the hyperrings. In this case, we introduce equivalence relations with re-
spect, to the both, additive and multiplicative hyperoperation. We determine how the
reducibility in hyperrings depends on the reducibility in hypergroupoids of which it
is composed. Further, we examine the reducibility for the specific types of general
hyperrings. In particular, we prove that any complete hyperring is not reduced. We
determine conditions such that the (H, R)— hyperring is reduced. Also, we present
some properties of the reducibility in some particular types of hyperrings, as H,— rings

with P— hyperoperations, hyperrings of formal series and others.

The last chapter contains some new research ideas concerning this study. Some
aims of our further research are related to the study of the reducibility in fuzzy hy-
perstructures, especially in fuzzy hypergroups. Also, we intend to extend the fuzzy
reducibility concept for the hyperrings and investigate the fuzzy reducibiity for certain

types of general hyperrings.

Podgorica, March 2022. Milica Kankaras



Izvod i1z teze

Teoriju hiperkompozicionalnih struktura (koja se jos naziva i teorijom hiperstruktura)
uveo je 1934. francuski matematicar F. Marty, kada je definisao hipergrupu i prikazao
neka njena svojstva i primjene u oblastima algebarskih funkcija 1 ne-komutativnih
grupa. Hiperstrukture predstavljaju nezavisnu oblast istrazivanja, a takode mogu
da sluze i kao "alat” za istrazivanje u drugim oblastima kao Sto su: Geometrija,
Grafovi i Hipergrafovi, Topologija, Kriptografija, Teorija kodiranja, Teorija automata,
Vjerovatnoca, Teorija fazi skupova. Mozemo reéi da su algebarske hipergrupe prirodno
uopstenje klasicnih grupa: binarna operacija grupe se prosiruje na binarnu multivrijed-
nosnu operaciju, nazvanu hiperoperacijom ili hiperproizvodom, koja svakom paru ele-
menata zadatog skupa pridruzuje njegov neprazni podskup. F. Marty je 1934. godine
dao prvi primjer hipegrupe, sto je ujedno bila motivacija za uvodenje ovog koncepta.
Ako je G grupa, a H njena podgrupa tada koli¢nicéka (faktor) struktura H/G u opStem
slucaju nije grupa, nego hipergrupa. U specijalnom slucaju, kada je H normalna pod-

grupa, odgovarajuca koli¢nicka struktura je grupa, a grupa je ujedno i hipergrupa.

Za neprazan skup /1, neka je P*( H) familija nepraznih podskupova skupa H. Binarna
hiperoperacija, koju jo§ nazivamo 1 hiperproizvodom je preslikavanje o : H x H —
P*(H), a uredeni par (H,o) se naziva hipergrupoidom. Vazno je naglasiti da je u
hipergrupoidu hiperproizvod xoy dva proizvoljna elementa x i y iz H neprazan podskup
skupa H, dok je u klasi¢nim algebarskim strukturama, rezultat binarne operacije izmedu
dva elementa samo jedan element inicijalnog skupa (koji se jos naziva i nosac¢). Ako je
hiperoperacija asocijativna, tj. vazi (aob)oc = ac(boc), za sve elemente a,b.c € H, tada
se hiperkompozicionalna struktura (H,o) naziva semihipergrupom. Semihipergrupa

postaje hipergrupa ako vazi i reproducibilnost : o H = Hox = H za sve x € .

Hiperoperacija o se proSiruje na neprazne skupove A, B skupa f{ i za x € H, vazi
[32):
AoB = U aob Aox=Ao{zx} xo0B={r}oB.

a€AbEB

Vi



Dakle, jednakost (aob)oc = ao (bo¢) implicira da

U uocC — U aov.

u€aob vEboc

Analogno pojmu hipergrupe, uskoro su se pojavile i ostale generalizacije algebarskih
struktura. Hiperprsteni su generalizacije struktura prstena, gdje se jedna od operacija u
prstenu zamijeni hiperoperacijom. Hiperpolje uopstava pojam polja. Slicno su uvedeni
i pojmovi hiperresetki, hipermodula. Osim toga, T. Vougiouklis je u [69], uveo novu
klasu hiperstruktura, takozvanih H,— struktura. H,— strukture su generalizacije poz-
natih algebarskih struktura, gdje su asocijativni i distributivni zakoni zamijenjeni nji-
hovim "slabijim” verzijama. Ove algebarske strukture su predmet interesovanja velikog
broja istrazivaca danas. Za detaljan istorijski razvoj teorije algebarskih hiperstruktura,

¢itaocima preporucujemo knjigu [32].

Vezama izmedu fazi skupova 1 algebarskih struktura su se pretezno bavili iranski
matematicari, koji su posmatrali kompozicije elemenata iz skupa H koje kao rezultat ne
daju podskup skupa H, ve¢ fazi skup na H. Za razliku od klasi¢nog skupa, gdje element
pripada ili ne pripada skupu, fazi skup dozvoljava da element ima odredeni stepen
pripadnosti skupu. Pojam fazi skupa je uveo Zadeh, u [71], gdje je definisao koncept
fazi skupa kao prosirenje pojma skupa. U teoriji fazi skupova, funkcija pripadnosti
uzima vrijednosti sa segmenta [0, 1], dok u klasi¢cnoj teoriji skupova karakteristicna
funkcija uzima samo vrijednosti 0 ili 1. Preciznije, fazi skup se definise kao uredeni par
koji sadrzi podskup univerzalnog skupa, i funkciju pripadnosti koja preslikava element
iz tog skupa na segment [0, 1]. Medutim, ¢esto upotrebljavamo termin fazi skup kada

govorimo o funkciji pripadnosti.

Definicija 0.1. (32| Neka je X skup. Fazi podskup A skupa X se karakterise funkcijom
pripadnost iy - X — [0,1] koja svakoy tacki x € X pridruiwe ocjenu ili stepen
pripadnosti ju4(x) € [0,1].

Prve veze izmedju fazi skupova i algebarskih struktura uspostavio je A. Rosenfeld
1971. godine, kada je definisao pojam fazi podgrupe grupe. 28 godina kasnije, B.
Davvaz je prosirio ovu definiciju na slucaj algebarskih hiperstruktura, uvodeci koncept
fazi podhipergrupe (obi¢ne) hipergrupe. Proucavanje fazi hiperstruktura je zapocelo
samo par godina prije, ¢lankom o fazi hipergrupama. 2009. godine V. Leoreanu-Fotea
i B. Davvaz uvode pojmove fazi hiperprstena i fazi hipermodula. Veoma znacajnu
vezu izmedu fazi skupova i hipergrupa uspostavio je Corsini, u [16], gdje je definisao
hiperoperaciju kao sredinu fazi podskupova, dobivsi tako pridruzeni prostor. Druga

konekcija, koja je od velikog znacaja za naSe istrazivanje, uspostavljena je uz pomoé

Vil



grade fazi skupa (grade fuzzy set) i1, kog je takode uveo Corsini [16]. Grade fazi skup
se koristi za definisanje fazi grade-a, koji predstavlja broj neizomorfnih pridruzenih
prostora i fazi skupova povezanih sa zadatim hipergrupoidom. Teorija hipergrupa
povezanih sa fazi skupovima predstavlja novi pravac u istrazivanju u teoriji hiperstruk-
tura koji je dozivio ekspanziju posljednjih 20 godina. Razlikujemo tri osnovna pristupa
u ovom istrazivanju: Izucavanje “obi¢nih” hiperoperacija dobijenih pomocu sredina
fazi skupova; Izucavanje fazi podhipergrupa (fazi skupovi ¢iji su nivo skupovi ”obi¢ne”
hipergrupe); Izucavanje fazi hipergrupa, tj. struktura obogacenih sa fazi hiperoperaci-
jama. Monografija "Fuzzy algebraic hyperstructures: an introduction” ¢iji su autori

Davvaz i Cristea [29], sadrzi pregled ove teorije.

U teoriji hiperstruktura odredene ekvivalencije igraju kljuénu ulogu u dobijanju
kolicnickih struktura, a te relacije nazivamo fundamentalnim relacijama. Fundamen-
talne relacije mogu da se podijele u dvije grupe: prva grupa sadrzi relacije o, 3,y
definisane na hiperprstenu (prva) i na semihipergrupi (druge dvije), takve da dobi-
jena kolicnicka struktura predstavlja prsten, semigrupu i komutativnu semigrupu (polu-
grupu), respektivno. Fundamentalne relacije su najmanje relacije ekvivalencije takve
da koli¢nicke strukture koje dobijamo faktorisanjem hiperstruktura po ovim relaci-
jama postaju klasicne strukture. Ove relacije predstavljaju "most” izmedu klasi¢nih
algebarskih struktura i hiperstruktura, a osim toga, primijecujemo da sada klasicne

strukture mozemo da posmatramo kao specijalne slucajeve algebarskih hiperstruktura.

Da bismo uveli preciznu definiciju fundamentalnih relacija potrebno je definisati

regularne relacije, kao 1 jako (strogo) regularne relacije.

Definicija 0.2. [13] Neka je (H, o) hipergrupoid, a,b € H i p je relacija ekvivalencije

na H. Tada je relacya p lyevo reqularna ako:

apb = (Yu € HVx € uoa,Jycuob: xpy
J (1)

Vue HVy € uob.3xr euoa: xpy)
Relacya p 7e desno reqularna ako:

apb= (Yu e HVreaou,Jyebou: xpy
: (2)

Vue HYy ebou,3r €aou: xpy)

Relacya p e reqularna ako je lyevo 1 desno reqularna.
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Definicija 0.3. [13] Neka je (H, o) hipergrupoid, a,b € H i p je relacya ekvivalencije

na H. Tada je relacya p jako lyevo regularna ako:

apb=VYue HVreuoa,Vycuob: xpy.
Relacya p e jako desno reqularna ako:

apb=vue HVxr caouVyebou: xpy.

Relacya p je jako reqularna ako je jako lyevo 1 jako desno reqularna.

Tvrdenje 0.1. |13] Ukoliko je (H, o) hipergrupa i R je relacije ekvivalencije na H, tada
ge R reqularna ako i samo oko je (H/R,®) hipergrupa, gdje je: x @y ={z:2 € xoy}.

Tvrdenje 0.2. [32] Ako je (I, 0) hipergrupa, a R relacyja ekvivalencije na H, tada je
R jako reqularna ako @ samo ako je (H/R,®) grupa.

Jedna od najpoznatijih 1 najznacajnih fundamentalnih relacija u teoriji hiperstruk-
tura je relacija /7.
Definicija 0.4. [46] Neka je (H, o) semihipergrupa i n > 1,n € N. Definisimo relaciju
3, na shedeci nacin:

xfny ako postoje  ay,dy,....a, tako da {r.y} C Hai
i=1
1 neka
B =Unp>10,, gdjege 3y ={(x,x)|lxr € H}

dyagonalna relacyya na H.

Relacija 7 je refleksivna i simetricna. Oznacimo sa 3* tranzitivno zatvorenje relacije

3.

Teorema 0.1. [46] 3* je nagmanjya jako reqularna relacija ekvivalencije na H u smislu

inkluzye.
Teorema 0.2. [16] Neka je (H,o) semihipergrupa (hipergrupa), tada je relacya [B*

naymanja relacya ekvivalencije takva da je kolicnick: skup H /3% semigrupa (grupa).

Relacija 3* se naziva fundamentalnom relacijom na H, a koliénicki skup H/3* se

naziva fundamentalnom semigrupom (grupom). Vazno je naglasiti da se u hipergrupi



fundamentalna relacija /7 poklapa sa relacijom 3* [32|. Dakle, koli¢nicki skup dobijen

faktorisanjem hipergrupe (sa odgovaraju¢om operacijom) po relaciji 3 je grupa.

U poglavlju Preliminaries se mogu na¢i definicije drugih znacajnih fundamentalnih

relacija.

Drugu grupa relacija koje se takode nazivaju fundamentalnim cine relacije koje je

uveo Jantosciak (42| da bi definisao pojam reducibilne hipergrupe.

Jantosciak je primijetio da hiperproizvod na zadatom skupu nekada ne pravi razliku
izmedu para elemenata u skupu, tj., elementi nekada igraju istu ulogu u odnosu na
zadatu hiperoperaciju. Jantosciak je, motivisan primije¢enim ponasanjem elemenata

definisao odredene ekvivalencije u cilju identifikovanja elemenata sa istim ponasanjem.

[42] Dva elementa x. y u hipergrupi (H, o) su: operaciono ekvivalentna, ako su njihovi
hiperproizvodi sa svim elementima u H isti: xca = yoa.iacxr =aoy, zasve au
H; nerazdvojva, ako x pripada istim hiperproizvodima a o b kao y, za sve a,b in H,

esencyjalno nerazlikujuca, ako su operaciono ekvivalentni i nerazdvojivi.

Definicija 0.5. (42| Reducibilna hipergrupa je hipergrupa u kojoy je klasa ekvivalencije
svakog elementa u odnosu na relactiju esencijalno nerazlikujucéi ~, jednoelementni skup,

t)., za sve elemente x € H, vazi x. = {x}.

Osim gore navedene definicije, isti autor je dokazao da je kolicnicka hipergrupa, do-
bijena faktorisanjem hipergrupe po relaciji esencijalno nerazlikujuci uvijek reducibilna
1 nazvao ju je reducubilna formom. Motivisan ovim svojstvom, pomenuti autor je
predlozio da istrazivanje reducibilnosti moze dalje da se razvija u dva smjera: izucavanje

reducibilnih grupa 1 izuc¢avanje svih hipergrupa koje imaju istu reducibilnu formu.

U daljem tekstu dajemo primjer reducibilne hipergrupe.

”

Primjer 0.6. Neka je (H,o) hipergrupa, gdje je hiperoperacija ” o ” definisana sa

sljede¢om tabelom:

ol a b c d

ala a a,bc| a,b,d

bla a a,b,c| ab,d (3)
clabrc|abc|abcl|ecd

d|abd]|abd|cd a,b,d

Lako je primijetiti da a ~, b, jer su vrste (i kolone) koje odgovaraju elementima a
i b potpuno iste, otuda: a, = b, = {a, b}, dok je ¢, = {c} i d, = {d}. S druge strane,
klasa ekvivalencije svakog elementa skupa H u odnosu na relaciju ~; je jednoelementni

skup, kao i u odnosu na relaciju ~, . Posljedi¢no, hipergrupa (H, o) je reducibilna.
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[zucavanje redicibilnosti ¢e u mojoj disertaciji biti prosireno na fazi slucaj u jednom
pravcu. Posmatra¢emo esencijalno nerazlikovanje izmedu slika elemenata u klasi¢noj
hipergrupoj "kroz” fazi skup. Drugi pravac je izucavanje esencijalnog nerazlikovanja
izmedu elemenata fazi hipergupe. U cilju izuc¢avanja reducibilnosti prosirene na "fazi
slucaj”, uvodimo pojam reducibilne fazi hipergrupe, tj. fazi hipergrupe koja je re-
ducibilna, kao i pojam fazi reducibilne hipergrupe, tj. hipergrupe obogacene sa fazi
skupom (na kojoj je defisan fazi skup) koja je reducibilna. Da bismo definisali kon-
cept fazi reducibilne hipegrupe, uvodimo nove ekvivalencije po ugledu na one koje je
definisao Jantosciak: fazi operaciona ekvivalentnost,fazi nerazlikovanjei fazi esenciyjalno

nerazlikovanje.

Definicija 0.7. (22| U hipergrupi (H,o) na kojoy je zadat fazi skup p, definisemo

shedece ekvivalencije:

1. x iy su fazi operaciono ekvivalentni i pisemo x ~y, y ako, za svea € H, p(roa) =
yoa) tpulaocx) = plaocy);

2. x iy su fazi nerazdvojivi i pisemo x ~y; y ako p(x) € plaob) <= u(y) € pl(aod),
zaa,be H;

3. x 1y su fazi esencyjalno nerazlikujucéi v pisemo x ~¢. y. ako su oni fazi operaciono
fely

ekvivalentni 1 fazi nerazdvojivi.

[22] Hipergrupa (H, o) je fazi reducibilna hipergrupa ako je klasa ekvivalencije svakog

elementa u odnosu na relaciju fazi esencijalno nerazlikovanje jednoelementni skup.

Vaznu klasa hiperstruktura koju ¢emo posmatrati u disertaciji ¢ine strukture hiper-
prstena. Hiperprsteni su hiperkompozicionalne strukture na kom su zadate dvije (hiper)
operacije (tako da nisu obje operacije), sa slicnim svojstvima koje imaju operacije u
prstenu. Postoje razliciti tipovi hiperprstena u zavisnosti od toga kako su zadati adi-
tivni 1 multiplikativni dio, tj., da li su oni definisani kao operacije ili hiperoperacije.
Hiperprsten moze da se definiSe pomoc¢u dvije hiperoperacije, ili sa jednom operacijom
1 jednom hiperoperacijom. Razlikujemo tri tipa hiperprstena: aditivni, multiplikativni
i generalni. Aditivni hiperprsten je hiperstruktura na kojoj su zadate aditivna hiper-
operacija i multiplikativna operacija, gdje je multiplikativna operacija distributivna u
odnosu na aditivnu hiperoperaciju. Najpoznatiji aditivni hiperprsten je definisao Kras-
ner 1983. godine [47|. Multiplikativni hiperprsten je hiperprsten na kome su zadate
aditivna operacija 1 multiplikativna hiperoperacija, gdje je multiplikativna hiperop-
eracija distributivna u odnosu na aditivnu operaciju. Najsiru klasu hiperprstena ¢ine
generalni hiperprsteni. Generalni hiperprsteni su hiperstrukture na kojima su zadate

dvije hiperoperacije, povezane distributivnim svojstvom.
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Definicija 0.8. [52| Hiperkompozicionalna struktura (R,®,®) je hiperringoid ako
I. (R,®) je hipergrupa.
2. (R,®) je semigrupa.

3. Operacya "®" je distributivna s obje strane u odnosu na hiperoperaciyu "®."

Ako su i sabiranje i mnozenje hiperoperacije, tada hiperringoid postaje generalni

hiperprsten.

Definicija 0.9. (67| Uredena trojka (R,®,®) je generalni hiperprsten ako:

1. (R,®) je hipergrupa.
2. (R,®) je semihipergrupa.

3. Mnozenje ® je distributivno u odnosu na @, tj., za sve a,b,c€ R a® (bdc) =
aOb®adci(a®b)Oc=abGcdboOe

U poglavlju Preliminaries prezentujemo osnovne definicije i pojmove povezane sa
hipergrupama, hiperprstenima 1 fazi skupovima. U prvom dijelu ovog poglavlja da-
jemo definiciju hipergrupe, nakon cega definiSemo sve tipove hipergrupa koje su pred-
met istrazivanja dalje u tezi. Nakon toga, uvodimo definiciju fundamentalne relacije i
uvodimo relacije 7* 1 v*, koje omogucavaju da faktorisanje hipergrupe (semihipergrupe)
po datim relacijama daje grupu (semigrupu). Dalje u ovom poglavlju definisemo sva
tri tipa hiperprstena. Na pocetku se podsjecamo definicije hiperprstena koji sadrzi adi-
tivnu hiperoperaciju 1 multiplikativhu operaciju, a nakon toga predstavljamo prsten sa
aditivnom operacijom 1 multiplikativnom hiperoperacijom, a zatim uvodimo definiciju
generalnog hiperprstena, gdje su i sabiranje 1 mnozenje hiperoperacije. Osim toga, pred-
stavljamo vazne klase hiperprstena s ciljem da izu¢avamo njihovu reducibilnost kasnije
u tezi. Na kraju poglavlja uvodimo definiciju fazi skupa i detaljno objasnjavamo nje-
govu vezu sa algebarskim hiperstrukturama. Takode, u ovom poglavlju izucavamo bitna
svojstva poznatog fazi skupa gt (grade fazi skup), koji koristimo dalje u proucavanju fazi
redicibilnosti. Takode, opisujemo proceduru konstrukcije niza pridruzenih prostora i
fazi skupova povezanih sa zadatim hipergrupoidom. U istoj sekciji uvodimo definicije

fazi hiperoperacije 1 fazi hipersemigrupe.

Drugo poglavlje se bavi sa ispitivanjem reducibilnosti u hipergrupama. U pr-
vom dijelu ovog poglavlja izlazemo motivaciju i rane ideje koje su povezane s ovim
konceptom, kao $to je prikazano u clanku [42], koji je predstavljao glavnu inspiraciju
za pisanje ove teze. U prvom dijelu poglavlja, prezentujemo neke rezultate o re-
ducibilnosti hipergrupa povezanih sa binarnim relacijama [23]. Zatim se fokusiramo
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na istrazivanje reducibilnosti za vise razlicitih tipova hipergrupa. U ovom poglavlju
predstavljamo rezultate koji su objavljeni u ¢lancima Fuzzy reduced hypergroup, koji
su 2020. godine objavile Kankaras i Cristea u Mathematics, 1 ¢lanka Reducibility in
Corsini hypergroups, koji je objavila Kankaras u Analele Stiintifice Universitatii Ovid-
wus Constanta, Seria Matematica 2021. godine. Dokazujemo da je proizvoljna kanonska
hipergrupa reducibilna, i kao posljedicu dobijamo da je proizvoljna hipergrupa sa par-
cijalnim skalarnim identitetima (ili i.p.s. hipergrupa) takode reducibilna. Svojstva
i.p.s. hipergrupe prezentovana u ovom poglavlju su znacajna za dalje istrazivanje
fazi reducibilnosti ovih hipergrupa. Dalje u ovom poglavlju izucavamo reducibilnost
za odredene klase cikliécnih hipergrupa, i pokazujemo da njihova reducibilnost zavisi
od vise uslova. Takode, izucavamo reducibilnost jako znacajne klase hipergrupa, tzv.
kompletnih grupa i zakljucujemo da svaka prava kompletna hipergupa nije reducibilna.
Ovaj rezultat koristimo kasnije pri izucavanju reducibilnosti kompletnih hiperprstena.
U posljednjoj sekciji drugog poglavlja dajemo neophodan i dovoljan uslov da Korsini-
jeva hipergrupa (Corsini hypergroup) bude reducibilna. Kao posljedicu ovog tvrdenja,
zakljucujemo da je dobro poznata B-hipergrupa, koja je specijalan slucaj Korsinijeve
hipegrupe, reducibilna hipergrupa. Takode, ispitujemo da li su direktni proizvodi Ko-
rsinijevih hipergrupa reducibilni.

Treée poglavlje se bavi fazi reducibilnoséu u hipergrupama, tj. ispitivanjem re-
ducibilnosti u "obi¢nim hipergrupama” na kojima je zadat fazi skup. U prvom di-
jelu poglavlja, uvodimo koncept fazi reducibilnosti, koji predstavlja jedan od pravaca
kako koncept reducibilnosti moze da se prosiri na fazi slucaj. Kasnije istrazujemo
fazi reducibilnost za vise klasa hipergrupa. Poglavlje sadrzi rezultate objavljene u
clancima Fuzzy reduced hypergroups i Reducibility in Corsini hypergroups. Dokazu-
jemo da proizvoljna totalna hipergrupa nije reducibilna, niti fazi reducibilna. Takode,
dokazujemo da nijedna prava kompletna hipergrupa nije fazi reducibilna, a nakon toga
isto pokazujemo 1 za hipergrupu sa parcijalnim skalarnim identitima (i.p.s. hiper-
grupa). Nakon toga, ispitujemo reducibilnost i fazi reducibilnost za posebnu klasu
ne-kompletnih 1— hipergrupa koju su definisali Corsini i Cristea u [17], i pokazujemo
da navedena hipergrupa nije reducibilna, niti fazi reducibilna. U posljednjoj sekciji
dokazujemo da Korsinijeva hipergrupa nije fazi reducibilna u odnosu na grade fazi skup
jt. Na kraju sekcije, posmatramo direktni proizvod Korsinijevih hipergrupa i pokazu-
jemo da rezultujuca hipergrupa nije fazi reducibilna. Poglavlje zavrsavamo sa kratkim
pregledom fazi hipergrupa. Ovo je drugi pravac "fuzifikacije” koncepta reducibilnosti,

koji ¢e biti predmet naseg istrazivanja u buduénosti.

Reducibilnost u hiperprstenima je tema éetvrtog poglavlja ove disertacije. Lako

je primijetiti da su u semigrupi (grupi), ekvivalencije ~, and ~; ekvivalentne relaciji
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jednakosti, sto znaci da x ~, y <= & ~; y <= x = y, pa nam izucavanje reducibil-
nosti u hiperprstenima sa jednom hiperoperacijom i jednom operacijom nije od znacaja.
Preciznije, ne¢emo se baviti izucavanjem reducibilnosti u aditivnom 1 multiplikativhom
prstenu. Dakle, izucava¢emo reducibilnost samo u generalnim hiperprstenima, gdje su
i sabiranje i mnozenje hiperoperacije. Za elemente x € R, oznacimo sa =¥ i 1 njihove
klase ekvivalencije u odnosu na hiperoperacije @ i ®, respektivno, gdje r € {o,i,e}

predstavlja tip ekvivalencije koji razmatramo.

Definicija 0.10. [21] KaZemo da su dva elementa x i y u hiperprstenu (R, ®,®) op-
eractono ekvivalentna, nerazdvojiva il esencyjalno nerazlikujuéa ako tmaju 1sto svojstvo
u odnosu na obje hiperoperacye, t).

l.r~yyakor®a - ydaadr aPyrtadr =a®y,rO®a=yoa, za sve
a€ R.

2. x~yakoread®b & ycadbirecdd &< yeccdd, za sveac R.

3. Osim toga, T ~¢ Yy ako x ~, Yy i .1 ~; V.

Sliéno kao u hipergrupama, uvodimo definiciju reducibilnog hiperprstena, koristeci
gore definisane relacije.

Definicija 0.11. [21] Hiperprsten R je reducibilni hiperprsten ako je klasa ekvivalencije
svakog elementa x € R u odnosu na relaciyu esencijalno nerazlikujuci ~. jednoelementni
skup, 3., T = {x} za sver € R.

Klasa ekvivalencije elementa x in R u odnosu na relaciju esencijalno nerazlikujuci
~. se dobija kao x, = 2P Nz = (2@ Nz®) N (29 N zf). Lako se primjecuje da, ako
je makar jedan od hipergrupoida (R,®) or (R, ®) reducibilan, tada je i hiperprsten
(R.®,®) takode reducibilan. Obrnuto, ako je (R, ®,®) reducibilan hiperprsten, tada
hipergrupoidi (R, ®) i (R, ®) mogu a i ne moraju da budu reducibilni.

Odredujemo kako reducibilnost u hiperprstenima zavisi od reducibilnosti u hiper-
grupoidima od kojih je sacinjen. Dalje, ispitujemo reducibilnost u specificnim tipovima
generalnih prstena. Posebno, dokazujemo da kompletni hiperprsteni nisu reducibilni.
Nakon toga odredujemo uslove koji impliciraju reducibilnost (H, R)— hiperprstena.
Takode, prezentujemo neka zanimljiva svojstva reducibilnosti u odredenim tipovima
hiperprstena, kao sto su H,— prsteni sa P— hiperoperacijama, A— prsteni, hiper-
prsteni formalnih redova i drugi.
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U Posljednjem poglavlju su prezentovane nove ideje koje su povezene sa nasim
istrazivanjem. Jedan od ciljeva naseg daljeg istrazivanja je izucavanje reducibilnosti u

fazi hiperstrukturama, posebno u fazi hipergrupama.

Definition 0.12. [60] Neka je S neprazan skup. Fazi hiperoperacija na S je preslika-
vanje o : S x S — F(S), gdye ye F(S) skup svih fazi podskupova skupa S. Struktura
(5,0) je fazi hipergrupoid.

Definicija 0.13. [60]| Fazi hipergrupoid (S, o) je fazi hipersemigrupa ako za sve a.b,c €

S, (aob)oc=ao (boc)iza svaki fazi podskup pt na S vazi

(@0 1)(r) Vies((@aot)(r) Au(t)), ako u+#0 "

0, tnace

(1o a)(r) Vies((t) A (toa)(r), ako pu+#10 )

0, tnace
za sver u S.

Definicija 0.14. [60] Fazi hipersemigrupa (S, o) je fazi hipergrupa ako je xroS = Sox =
Xs, 2a svex u S, gdje je xs karakteristicna funkcya skupa S,tj.,

[ s

[0. if x¢S6. ©)

Xs(r)

Da bi definisali reducibilnu fazi hipergrupu, uvodimo nove relacije ekvivalencije na
fazi hipergrupi, tj. na hipergrupi na kojoj je zadata fazi hiperoperacija. Relacije imaju
ista imena kao u slucaju ”obicne” hipergrupe: operaciona ekvivalentnost, nerazdvo-

jivost i esencijalno nerazlikovanje.
[22] Dva elementa x, y u hipergrupi (H, o) su:
1. operaciono ekvivalentna ili o-ekvivalentna, i piSemo x ~, ¥y, ako (xr o a)(r) =
(yoa)(r),i(aox)(r) = (aoy)(r), zasvea,re H;

2. nerazdvojiva ili i-ekvivalentna, i pisSemo x ~; y, ako za sve a,b € H,r € supp(a o
b) <= y € supp(aob), tj., (aob)(x) # 0 <= (aob)(y) # 0;

3. esencyalno nerazlikujuci ili e-ekvivalentni, i piSemo xr ~. y, ako su operaciono

ekvivalentni 1 nerazlikujuci.
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Definicija 0.15. [22| (H, o) je reducibilna fazi hipergrupa ako i samo ako za sve x € H
vazi ro = {x}.

U posljednjem poglavlju se nalaze primjeri reducibilnih fazi hipergrupa koji su mo-
tivacija za dalji nastavak istrazivanja ovog svojstva. Osim toga, namjeravamo da u
buduénosti prosirimo koncept fazi reducibilnosti na hiperprstene i istrazujemo fazi re-

ducibilnost u odredenim tipovima generalnih hiperprstena.

Podgorica, 2022. Milica Kankaras



Abstract

This thesis deals with the reducibility property in algebraic hypercompositional struc-
tures. The concept of reducibility was introduced by Jantosciak, when he defined certain
equivalences in order to identify elements which have the same role with respect to the
hyperoperation. He defined the operational equivalence, inseparability and essential in-
distinguishability in a hypergroup and called these relations fundamental. Besides, he
gave a definion of a reduced hypergroup as a hypergroup where the equivalence class of
any element with respect to the relation ”essential indistinguishability” is a singleton.
Based on the relations defined by Jantosciak, we introduce new equivalence relations
on a crisp hypergroup endowed with a fuzzy set and call them the fuzzy operational
equivalence, fuzzy inseparability and fuzzy essential indistinguishability, i.e., we extend
the reducibility concept to the fuzzy case. We define a fuzzy reduced hypergroup as a
hypergroup where every element has a singleton equivalence class with respect to the
fuzzy essential indistinguishability. Further more, the extension can go to another di-
rection, which leads to the study of the reducibility in fuzzy hyperstructures, which are
hyperstructures endowed with fuzzy hyperoperations. The fuzzy reducibility strictly
depends on the given fuzzy set, but in our thesis we will only consider the fuzzy set
it defined by Corsini and called grade fuzzy set. In the second part of the thesis, the
concept of the reducibility is extended to general hyperrings. The equivalence relations
are defined with respect to the both, additive and multiplicative hyperoperations. Af-
ter presenting some general properties and examples of reduced hyperrings, our study
focuses on particular types of hyperrings. They are complete hyperrings, (H, R)— hy-
perrings, A— hyperrings and the hyperring of formal series. The thesis ends with a

conclusive part containing also some ideas of future works.
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Chapter 1

Preliminaries

This chapter gathers together the basic notions and results related to hypergroups and
hyperrings. For a detailed overview we referee the readers to the fundamental books
(13, 32].

1.1 Hypergroups

For a non-empty set /1, we denote by P*(H) the family of all non-empty subsets of H. A
binary hyperoperation, called also a hyperproduct, is an application o : Hx H — P*(H)
and the pair (H, o) is called a hypergroupoid. If hyperoperation o mapps H x H to P(H),
where P(H) the family of all subsets of H (including the empty one), then pair (H, o)
is called a partial hypergroupoid. It is important to stress that in a hypergroupoid
the hyperproduct o y between two arbitrary elements x and y in H is a non-empty
subset of H, while in classical algebraic structures, the result of a binary operation
between two elements is just one element of the initial set (called the support set). If
the associativity is also valid, i.e., (aob)oc =ao(boc), for all a,b,c € H, then the
hypercompositional structure (H,o) is a semihypergroup that becomes a hypergroup
when also the reproducibility property holds: ¥ o H = Hox = H for all x € H.

The hyperoperation o is extended also to non-empty subsets A, B of H and for
r € H. there is [32]

AoB = U aob Aox=Ao{x} xoB ~ {x}oB.
a€A bEB
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So the associative property (aob)o e~ ao (boc) means that

U woe= | aow

w€aob vEboc

[f the hyperoperation o satisfies just the reproducibility, then (H, o) is called a quasi-
hypergroup (32].

A hypergroupoid (H,o) which is both a semihypergroup and a quasihypergroup is
called a hypergroup [32].

For the representation of a certain finite hypergroup H we often use the Cayley table.
The Cayley table describes the hyperoperation action on every pair of elements in H.
In the following example, we represent the hypergroupoid (H, o) with the Cayley table
and show that the given hypergroupoid is a hypergroup.

Example 1.1. On the set H = {a, b, ¢, d} define the hyperoperation o by the following

Cayley table:
ola b c d
ala a a,b.c | ab.d
b|a a a,b.c|ab.d (1.1)
c|abc|abecl|abec|cd
d|abd]|abd]|cd a,b.d

Let us first check whether the reproduction axiom is valid, i.e., whether the hyperprod-
uct of any element x with the set H gives the whole set H.

The hyperproduct a o H is equal to Uaox =aoaUaobUaocUaod =

reH
{atU{alU{a,b,c}U{a,b,d} = {a,b,c,d} = H. Due to the commutativity (the table is

symmetrical about the main diagonal), the hyperproduct H oa is equal to ao H, which
means that ao H — Hoa = H. Similarly it can be proved that boH = coH = doH = H
and Hob=Hoc=Hod= H.

The verification of the associativity property sometimes can be very demanding,
because in general, it requires n® checks, where |[H| = n.
Let us show the identity (boc)od = bo(cod). Since boc = {a, b, c}, then the hyperproduct
(boc)odisequal to {a,b,c} od, which is further equal to acdUbodUcod = H.
Similarly, bo (cod) = bo{c,d} = bocUbod = H. All other checkings of the associativity
identities can be done in a similar way. Since the hypergroupoid (H, o) satisfies both,
the associativity and the reproducibility, then it is a hypergroup.

Remark 1.1. Notice that a hypergroup H such that |[roy| =1, for any x,y € H is a
group, while every group is a hypergroup.
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Some well known examples of hypergroups are listed below.

Example 1.2. [32] Let ((7,-) be a group, H be a normal subgroup of G, and for all
x,y € G, the hyperoperation is given with x oy — xyH. Then (G, o) is a hypergroup.

Example 1.3. [32] Let the hyperoperation ” o” be defined on the set of real numbers
as follows: rox = x for all x € R and x o y is the open interval between x and y. The

hyperstructure (H, o) is a hypergroup.

Definition 1.1. [13] If H is a non-empty set and for allx,y € H it holds that xoy = H,
then the hypergroup (H, o) is called a total hypergroup.

Analogously to subgroups and semigroups in classical algebra theory, in hypercom-
positional algebra we introduce subsemihypergroups and subhypergroups.

Definition 1.2. [13] A non-empty subset K of a semihypergroup (H.o) is called a
subsemuihypergroup if it 1s a semihypergroup. In other words, a non-empty set K of a
semihypergroup (H, o) 1s a subsemihypergroup iof K o K C K. A non-empty subset L of
a hypergroup (H, o) s called a subhypergroup if it is a hypergroup.

Definition 1.3. [13] A subhypergroup K of a hypergroup (H,o) s said to be conjugable
iof for all x € H there exists y € H such that x oy C K.

The set H itself is a subhypergroup of H. We call all other subhypergroups as proper
subhypergroups.

Example 1.4. [35] If Z is the set of integers and the hyperproduct on the set Z x Z is
defined as (a,b) o (¢,d) = {(a,b+d),(c,b + d)}, then the hyperstructure (Z x Z,0) is a
hypergroup, while the hyperstructure (Z x {0}, o) is a subhypergroup of (H, o).

Definition 1.4. [13] Let (H, o) be a hypergroupoid. An element e is called a left identity
iof for any a € H,a € e o a. Stmalarly, an element e 1s called a right identity of for any
a € Ha€aoe. An element e is called an identity (or unit) if it is both, a left and a
right wdentity, v.e., if foranya e Hoa€ aoeeoa.

Definition 1.5. [13]| Let (H.o) be a hypergroup endowed with at least an identity. An
element a € H is called a left inverse of a if there exists an identity e € H such that
eca oa An element a € H is called a right inverse of a if there exists an identity
e € H such thate € aoa . An element a' € H is called an inverse of a if it is both, a
left and a right inverse, i.e., there ezists an identity e such thate € aoa Na oa.

Definition 1.6. [13] A hypergroup (H, o) is called a regular hypergroup if it has at least
one identity and all elements from H have at least one inverse.
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The first construction of a homomorphism was given by Corsini in [6], 34 years after
the notion of a hypergroup was introduced. Later, in 1991, Jantosciak gave the defini-
tions for the various types of homomorphisms [41]. We will present some of important

definitions of homomorphism which are widely used in the study of hyperstructures.

Definition 1.7. [32] Let (H,,0) and (Ha,*) be two hypergroupoids. A mapping [ :
aql — H2 15 called

1. A homomorphism if for all v,y € H f(xoy) C f(x)* f(y).
2. A good homomorphism if for all v,y € H f(xoy) = f(x)* f(y).

3. A wvery good homomorphism if it is good and for all x.y € H we have f(x/y) =

f@)/f(y) and f(z\y) = f(x)\ f(y) where z/y — {z € H : v € zoy} and
x\y={ue H:yexou}.

There are many classes of hypergroups in hypergroup theory. We will mention some
of them, which are relevant for our research. One of the most important classes of
hypergroups are join spaces. Join spaces are introduced in [56] by Prenowitz. They are
particular type of hypergroups, used in Graph theory, Geometry, Binary relations and
other areas. Jantosciak and Prenowitz [57, 58] have given an algebraic interpretation
of linear, spherical and projective geometry using ”join” hyperoperation. In the linear
geometry, the ”join” hyperoperation assigns to two distinct points a segment, in the
projective geometry it assigns to them a line, while in the spherical geometry, the ”join”
hyperoperation assigns to two distinct points a minor arc of great circle throught these
points. Besides, join spaces can be used to characterize lattices, median algebras, graphs
and so on.

Let a,b are elements from (H, o), and denote
a/b={x € H:aéeuzxob}.

The set a/b is called the quotient of a and b or the extension of a from b [32].

Definition 1.8. [32] A commutative hypergroup (H, o) is called a join space if for all
a,b,c,d from H, there s

a/bNec/d#0 —aodNboc# 0

The particular type of join hypergroup having a scalar identity is called a canonical
hypergroup. It was introduced by Krasner, who introduced them as an additive part
of hyperrings and hyperfields. However, they were named after Mittas in [54], who has
been later studied them in depth.
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Definition 1.9. [32] We say that (H, o) s a canonical hypergroup if

1. It 1s a commutative

2. It has a scalar identity (scalar unit) i.e., there emists e € H such that for all
x € H there isxoe =eor = .

3. Fvery element has a unique inverse, i.e., for all ¥ € H, there exists a unique
2=t € H, such thate e xozx ' Na~loux.

4. It is reversible, which means that for any (z,y,a) € H? holds

(a) f y € aox, then there exists a inverse of a such that x € a oy.

(b) if y € x0a, then there exists " inverse of a such that x € yoa .

Remark 1.2. [32] The identity of a canonical hypergroup is unique.

Let (H,+) be a canonical hypergroup and N be an arbitrary canonical subhyper-
group of H and set H/N = {x + N.x € H}. Let us define the hyperoperation + on
H/N as follows

(z+N)+ (y+N)={t+ N|tex+y}.

Proposition 1.1. [61] For every canonical hypergroup H, if N 1s an arbitrary canonical
subhypergroup of it, then the hypergroup (H/N,+) is a canonical, too.

1.1.1 Corsini hypergroups

Let us present now a new class of hypergroups, called Corsini hypergroups. We will
observe in depth the reducibility property for Corsini hypergroups in the third chapter.
In the first studies concerning the relationship between hypergroups and hypergraphs,
Corsini defined the following hypergroupoid.

Definition 1.10. [29] Let I' = (H; {A;}:) be a hypergraph, i.e., for any i, A; € P(H) \
0;U, 4. = H for any x € H. Set E(x) = |J,e4, Ai- The hypergroupord Hp = (H, o)
where the hyperoperation o is defined by:

Y(x,y) € H?*, xoy=FE(z)UE(y)

s called a hypergraph hypergroupoid.

Definition 1.11. [15] The hypergroupoid Hr satisfies for each (x,y) € H?, the following
conditions:
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l.roy=zoxUyoy,
2. xr€zxox,
3. yezxoxrfand onlyifr e youy.

Theorem 1.1. [15] A hypergroupoid (H, o) satisfying the conditions in Definttion 1.11
is a hypergroup if and only if also the follounng condition is valid:

Y(a,c) € H* cococ\cocCaoaoa.

This hypergroup was studied also in [2], where the authors named it ”Corsini hy-
pergroup” and investigated also its properties connected with the Cartesian product.

Here we recall one result, that we will need in our research.

Theorem 1.2. [2] Let (H, o) and (H,o,) be two Corsini hypergroups. Then the direct
product of hypergroups (H x H,o| x o3) is a Corsint hypergroup if and only if (H, o))
or (H.oy) (or both) 1s a total hypergroup.

Note that, for two given hypergroups defined on the same support set H, the hyper-
operation ® = 0 X oy is defined as (z1,72) @ (y1,42) = (Z101 Y1, T202Y2), 71, T2, Y1, Y2 €
H. The structure (H x H,®) is called the direct product of hypergroups.

Let us define a particular type of Corsini hypergroup, studied for its important
properties in the theory of automata and languages [52], which is called B-hypergroup
by G. Massouros. The name of this hypergroup was given due to the binary result
that the hyperoperation gives. It was also investigated in connection with fortified join

spaces [51] or breakable semihypergroups [40].

Definition 1.12. [52] Let H be any non-empty set. For any (z,y) € H?, define x as
follows

rxy = {z,y}.

Then the hypergroup (H,*) s called a B-hypergroup.

Proposition 1.2. [2] Any B-hypergroup (H,) is a Corsini hypergroup.

1.1.2 Fundamental relations in hypergroups

In the following we introduce one of the key concepts in the hypercompositional algebra.
We define fundamental relations, which play the role of connection between the classical

and the hypercompositional algebra.



CHAPTER 1. PRELIMINARIES 7

As we have already explained in the introductory part, the algebraic hypergroups are
the most natural generalization of the classical groups: the binary operation of groups
is extended to a hyperoperation, where the composition of two elements of a given set
gives a non-empty subset of it. The first example of such hyperoperation was given
by Marty [49], when he noticed that if G is a group, and H is its subgroup, then the
quotient (¢/ H is a hypergroup. The quotient G/ H forms a group only in the case when
H is a normal subgroup. In classical algebra, quotient sets are important because they
provide a tool for obtaining a stricter structure from the initial one. In the hyperalgebra,
quotients sets are very important because they connect classical algebraic structures
with algebraic hyperstructures. Connection between semihypergroups (hypergroups)
and semigroups (groups) can be established via specific equivalence relations. These
relations play a role analogous to the congruences in the classical algebra. If we start
with a (semi) hypergroup, using this equivalence relation and a corresponding operation
we get a (semi) group structure on the quotient set. To be more precize, equivalence
relation defined on a hyperstructure such that the quotient set (hyperstructure modulo
this equivalence relation ) is a classical structure having the same behaviour, is called
a fundamental relation. Besides, the fundamental relation is the smallest equivalence
relation such that the described quotient set is a classical structure. The corresponding
quotient sets are called fundamental structures. Using fundamental relations, algebraic
hyperstructures can use a plenty of tools used in a classical algebra.

In order to give a strict definition for these relation, let us first define a strongly regular

relation.

Definition 1.13. [13] Let (H,0) be a hypergroupoid, a.b € H and p be an equivalence
relation on H. Then p s reqular to the left if:

apb = (Vu € HVxr € uoa,Jy € uob: xpy
and (1.2)
Vue HYy cuob3r cuoca: zpy)

The relation p s reqular to the Tight if:

apb = (Yu € HVxr €aou,Jy ebou: xzpy
and (1.3)
Vue HVy ebou,3x eaou: 2py)

The relation p s reqular if it 1s reqular to the left and to the right.
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Definition 1.14. (13| Let (H,0) be a hypergroupoid, a,b € H and p be an equivalence
relation on H. Then p is strongly reqular to the left if:

apb=Yu e HVxr €uoa,Vy€€uob: xpy.
The relation p 1s strongly reqular to the right if:
apb=Yue HVxr€aou,Vyebou: xpy.

The relation p s strongly reqular if it is strongly reqular to the left and to the right.

Given a semihypergroup H and a regular relation R, the quotient H/R is a semi-
hypergroup. Besides, with a properly defined hyperoperation on the structure H/R, if
the relation R is a strongly regular relation, then the quotient H/R is a semigroup.

Theorem 1.3. (32| Let (H,o) be a semihypergroup and R be an equivalence relation
on H.

1. If R 1s regular, then the quotient H/R is a semihypergroup with respect to the

following hyperoperation ¥ 3y ={z:z € roy}.

2. If the above hyperoperation is well defined on H/ R, then the relation R s reqular.
Corollary 1.1. [13] If (H, o) is a hypergroup and R is an equivalence relation on H,
then R 1s regqular if and only if (H/R.®) s a hypergroup.

The following theorem states that a semihypergroup H factorized by a strongly

regular relation I is a semigroup.

Theorem 1.4. (13| Let (H,o) be a semihypergroup and R be an equivalence relation
on H.

1. If R 1s strongly reqular, then the quotient H/ R is a semigroup with respect to the
following operation z @y = {z: 2z € x o y}.

2. If the above operation is well defined on H/R, then the relation R 1s strongly
reqular.

Corollary 1.2. (32| If (H,0) is a hypergroup and R 1s an equwvalence relation on H,
then R 1is strongly reqular 1f and only if (H/R,®) s a group.

Strictly speaking, the fundamental relation is the smallest strongly regular equiva-
lence relation, such that the corresponding hyperstructure factorized by this relation
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becomes a classical structure. Until now, for semi (hypergroups), two fundamental re-
lations are defined, by Koskas [46] and Freni [39]. Later, this concept has been studied
by Corsini, Vougiouklis, Davvaz, Loreanu-Fotea, Migliorato and many others. In 1970,
Koskas connected classical structures with hyperstructures using a relation 3. He no-
ticed a similar behaviour of elements belonging to the same hyperproducts and using
that, he defined a relation [ which was reflexive and symmetric. After that, he denoted
by [* its transitive closure in order to define equivalence relation and to partition the
quotient set into equivalence classes.

In the following we give the definition for the 3 relation.

Definition 1.15. [46] Let (H, o) be a semihypergroup and n > 1,n € N. We define the
3, relation as follows

n
rhny  if there exist  ay,ay,...,a, such that {x,y} C H“*
=1
and let
B =Up>18n, where () = {(z,z)|r € H}

is the diagonal relation on H.

The relation f is reflexive and symmetric [46]. We will denote with §* the transitive
closure of .

Theorem 1.5. [46] 3* is the smallest strongly reqular equivalence relation on H with
respect to the inclusion.

Theorem 1.6. [46] Let (H. o) be a semihypergroup (hypergroup), then the relation [*
1s the smallest equivalence relation such that the quotient H/3* 1s a semigroup (group).

As we have already mentioned, the relation 5* is called the fundamental relation on
H and the quotient H/3* is called the fundamental semigroup (group). It is important
to emphasize that in hypergroups, the fundamental relation [ coincides with the g*
relation [32]. Thus, the quotient set obtained by factorizing a hypergroup by the
equivalence /7 is a group.

Another fundamental relation, denoted v, was defined on a semihypergroup by Freni.
He denoted by ~* its transitive closure, and he set v = Un?l Yn, where v, is the diagonal
relation and for, n > 1,, is the relation defined as follows [39]:

n n
vy < Nz, 22, ,zn) EHY 30 E S, T € Hzi,y € Hza(l).

=1 1=1



CHAPTER 1. PRELIMINARIES 10

7 is symmetric and reflexive.

Theorem 1.7. [39] Let H be a semihypergroup. The relation v* 1s the smallest strongly
reqular equivalence relation such that the quotient H/~* 1s a commutative semigroup.

1.1.3 Complete hypergroups

Using fundamental relations, we define wide and very important class of hypergroups,

called complete hypergroups.

The definition of a complete hypergroup is based on the notion of complete part.
introduced by Koskas in [46]. The complete part is used for the purpose of character-
ization of the equivalence class of an element under the relation 3*. More precizely, a
non-empty set A of a semihypergroup (H,o) is called a complete part of H, if for any
natural number n and any elements a,,as, ...,a, in H, the following implication holds
[46]:

n

AN ﬁul #0=]]ac A
=1

i=1
We may say, as it was mentioned in the overview paper written by Antampoufis et
al [3], that a complete part A absorbs all hyperproducts of the elements of H having
non-empty intersection with A. The intersection of all complete parts of H containing
the subset A is called the complete closure of A in H and denoted by C (A) [46].

The complete parts were later studied by Corsini [8] and Sureau [65]. De Salvo stud-
ied some of their properties in [37]. Migliorato also introduced a notion of a n—complete

part, which is the generalization of complete parts [53].

For a given semihypergroup H and a strongly regular relation R on H, the equiva-
lence class of any element x from H is a complete part of H [32].

Theorem 1.8. [32] Let (H, o) be a semihypergroup. The follounng conditions are equiv-
alent:

I.Ve,ye H VYaexoy Cla)=2x0y.
2.¥Vx,ye H Clxoy)=xo0y.
Definition 1.16. [32] A semihypergroup is complete if it satisfies one of the above

equivalent conditions. A hypergroup 1s complete if it 1s a complete semihypergroup.

Let us define the notion of the heart of hypergroup, which is directly connected with
fundamental relations.
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Definition 1.17. [32] Let (H, o) be a hypergroup and consider the canonical projection
oy - H — H/B*. The heart of the hypergroup H 1is the set wy = {x € Hlpy(x) — 1},
where 1 1s the identity of the group (H/B*, ®).

As we explained before, 5* is the smallest strongly regular equivalence relation such

that the quotient H/3* represents a group and the operation ® is given with
' r)y® B (y) = p*(2),z €xoy, with z,y€ H.

From the above definition, it is clear that the heart contains all elements x for which

the equivalence class §*(x) is the identity in H/3*.

The heart of a hypergroup was studied in depth by Loreanu in her Phd thesis, and
together with Corsini in [18].

Theorem 1.9. [32] The heart wy is a complete part of H.
Moreover, the heart of a hypergroup is the smallest complete part of hypergroup H,
which is also a subhypergroup of H|[32].

Since it is satisfied that g*(x) = wy o x = ¥ o wy, we may say that the heart gives
us an information about the partition set corresponding to the element z under the
relation #*. The heart wy of a complete hypergroup (H, o) has an interesting property:
it contains all identities of H.

Theorem 1.10. (13| Let (H,0) be a complete hypergroup.

1. The heart wy 1s the set of two-sided identities of H.

2. H 1s reqular and reversible.

As we can see in [13, 19, 30|, in practice, it is more convinient to use the following
characterization of the complete hypergroups.

Theorem 1.11. [13] Any complete hypergroup may be constructed as the union H =

U Agy of its subsets, where
g€eG

1) (G.-) is a group.

2) The family {A,,|g € G} is a partition of G, v.e., for any (g91,92) € G2, g1 # 92,
there is Ay, N A, = 0.
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3) If (a,b) € Ay x Ay,, thenaob — Ay ..

Above theorem clearly shows that any group is a complete hypergroup, too. How-
ever, in the thesis, we will consider only proper complete hypergroups, so complete

hypergroups that are not groups.

Example 1.5. [19] Let (H, o) be the hypergroup represented by the following commu-
tatwe Cayley table:

€ €| ap,az,as ap,az,as ap,az,as

a e e e (1.4)
Qs e e
as €

The hypergroup (H, o) is complete, where the group G = (Zs, +), and the partition set
contains Ao = {e}, Ay = {ay,as,as}. It is easy to see that H is the union of sets Ao and
A\, which are disjoint. Obviously, ece = Apyo = Ao = e. Further, eoa; = Aoy = Ay,
since e € Ag,a; € Ay, for 1 € {1,2,3}. Due to the commutativity, a, o e = A,. Further,
because a; € A, for indices i € {1,2,3}, thena,oa; = ajoa; = A4 = Ap = e. Hence,
all conditions in Theorem 1.11 are fulfilled.

The complete hypergroups have been studied for their general properties [37], or in
connection with their fuzzy grade [19, 26], or for their commutativity degree [62].

1.2 Hyperrings

Hyperrings are hypercompositional structures endowed with two (hyper)operations,
and denoted additively and the other one multiplicatively (but not both operations),
with similar properties of the operations on rings. There are different types of hyperring
structures depending on how the addition and multiplication are defined, i.e., if they are
defined as operations or hyperoperations. There are different concept of the hyperring
structures in the hyperstructure theory. The hyperrings can be defined with the help of
two hyperoperations, or with the one hyperoperation and the one operation. We differ
between three types of hyperrings: additive, multiplicative and general hyperring. The
additive hyperring is a hyperstructure endowed with an additive hyperoperation and
multiplicative operation, where the multiplicative operation is distributive with respect

to the additive hyperoperation. The most known additive hyperring was introduced by
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Krasner in 1983 [47], and it was named after the author. Later, Krasner also studied
quotient hyperrings and hyperfields. This type of hyperring has been widely studied
by many authors, as Massouros, Loreanu-Fotea, Davvaz, Mittas, Vougiouklis, Spartalis
and others. The other two types of hyperrings are multiplicative and general hyperring.

Definition 1.18. [47] A Krasner hyperring is an algebraic structure (R, +,-) such that
the additive part (R,+) is a canonical hypergroup, the multiplicative part (R,-) is a
semigroup having zero as a bilaterally absorbing element, i.e., x -0 =0 -2 =0 for all

” ”»

xr € H. and the multiplication 15 distributive with respect to the hyperoperation” +7.

A Krasner hyperring is commutative if (R, -) is a commutative semigroup. A Krasner

hyperring is a hyperring with unit if the semigroup (R,-) has a unit [47].

Example 1.6. [4] On the set R = {0, a,b,c}, define an hyperoperation + and a mul-
tiplication - by the following tables:

+10]|a c Olalb]|c
010 cl|0[0]0]0]O
alal0blac|b|lal0]al|b]|c
b |bla,c|0blallb|0]b|b]|O
c |c a O0|lc|0]c|O0]c

The structure (R, +,-) is a Krasner hyperring.

Example 1.7. [32] If (H,<,+) is a totally ordered group and the hyperaddition is
given with
rér—{te Ht <ax},Vre H,

r®y = {max{x,y}},Ve,y e H.x # y,

then the structure (H, &) defines a canonical hypergroup. If (H, +, -) is a totally ordered
ring, then (H,, ) is a Krasner hyperring.

Definition 1.19. [34] A commutative Krasner hyperring with unit is called a Krasner
hyperfield if R\ {0} s a group.

Example 1.8. [5] On the set F' = {0, 1} define an additive hyperoperation ”+” and a

multiplicative operation ”-” by the following tables:
1
0101 0100
0,11
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The hyperstructure (F, +,-) is a Krasner hyperfield.

An important example of a Krasner hyperfield can be found in [47], where the author
presented the way to construct Krasner hyperfields using a field.

Example 1.9. [47] Let (F. +,-) be a field, G be a subgroup of (F \ {0},) and let
H = F/G = {aGla € F} where the hyperaddition and the multiplication are given

with the formulas:
aG & bG = {cCGle € aG + G,

aG ® bG = abl.

Then the hyperstructure (H,®,®) is a hyperfield.

Definition 1.20. (32| A subhyperring of a Krasner hyperring (R, +,-) is a non-empty
subset A of R which forms a Krasner hyperring.

Definition 1.21. (32| Let (R, +,-) be a hyperring, and A be a subhyperring of R. We
say that A is a left (right) hyperideal of R if r-a € A (a-r € A) for all r € R, with
a € A. A is a hyperideal of R if it is both, left and right hyperideal.

In practice, sometimes it is more suitable to use the following characterization.

Lemma 1.1. [32] Let A be a non-empty set of the hyperring (R, +,-). A is a left (right)
hyperideal of the hyperring if and only if

1. For any a,b € A, it holds that a — b € A.
2. Ifae Aire Rthenr-ae A (a-reA).

Example 1.10. [5] Let (R, +,-) be the hyperring from Example 1.6. The hyperideals
of the hyperring R are the sets: {0}, {0,b}, {0,c},{0,b,c} and R.

The another type of hyperring, equipped with an additive operation and a multi-

plicative hyperoperation was introduced by R. Rota in [59]. This type of hyperring is
called a multiplicative hyperring.
More exactly, the structure (R, +, -) is a multiplicative hyperring if: (R, +) is an Abelian
group, (R,-) is a semihypergroup, and the operation - is weakly distributive with re-
spect to the hyperoperation +, i.e., a(b+ ¢) C ab + ac and (b + c)a C ba + ca for all
a.b.ce R [5]
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Example 1.11. [32] Let K be a field and V' be a vector space over K. Let < a,b > be
a subspace generated by the set {a, b}, where a,b € V. Then, if we define for all

a,beV, aob-=-<ab>.

Then the hyperstructure (1, +,0) is a multiplicative hyperring.

Example 1.12. [32] Let (R, +,-) be a ring and I be an ideal of it. If we define the
hyperoperation on R as
Va,be R axb=ab+ 1,

then the hyperstructure (R, +, ) is a multiplicative hyperring.

Definition 1.22. [32] Let (R, +,) be a multiplicative hyperring and H be a non-empty
subset of R. We say that H is a subhyperring of (R, +,-) of (H, +,-) s a multiplicative
hyperring itself.

Similarly to the Krasner hyperring, a non-empty subset A of a multiplicative hyper-
ring K is a left (right) hyperideal if for all a,b € A thereisa—be Aandifae A,r e R
it implies that r-a € A(a-r € A). If the hyperideal is both, left and right, it is called
a hyperideal 32].

Example 1.13. [27] Let (Z4, +,0) be a multiplicative hyperring where Z4 = Z, and
the hypermultiplication is given with x oy = {z-a-yla € A}, where A = {2,4}. Then
the set 12Z = {12n : n € Z} is a hyperideal of the hyperring (Z4, +, o).

The widest class of hyperrings is the class of general hyperrings. These are hyper-
structures endowed with two hyperoperations, connected by the distributibivity prop-
erty. The general hyperring was firstly introduced by Corsini [7], who used it for
defining and studied feeble hypermodules. Many authors gave a definition of a general
hyperring, but the most general one was by Spartalis in 1989 [63]. In order to define
general hyperrings let us first define the hyperringoid.

Definition 1.23. [52] A hypercompositional structure (R, &, ®) is called a hyperringowd
of

1. (R,®) is a hypergroup.

2. (R,®) 1s a semigroup.

3. The operation "®” distributes on both sides over the hyperoperation "&®.”
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This algebraic hyperstructure was first introduced by Massouros and Mittas [52] in
the study on languages and automata. If we request that both addition and multipli-

cation are hyperoperations, then the hyperringoid becomes a general hyperring.
Definition 1.24. [67] A triple (R, ®,®) is a general hyperring if:

1. (R,®) 1s a hypergroup.

2. (R,®) is a semihypergroup.

3. The multiplication ® 1is distributive with respect to the addition &, i.e., for all
abee R, a®(b®c)=a0bPaGcand (aBb)Oc=aGchboOec.

Definition 1.25. [32] A commutative general hyperring (R, &, ®) s called a hyperfield
if R* # 0, where R* = R\ {w},w is the heart of the additive part of a hyperring and
(R*,®) 1s a hypergroup.

Example 1.14. [34] The hyperstructure (R, ®,®), where R = {a,b,c,d} is a hyper-
field.

a b c d
a a.b|lcd]|cd

o) a b c d
a

b |ablabl|cd|cd

c

d

a,blab|ablab
a,blab|abl|ab
a,blab|cd]|ecd
a,blab|cd]|ecd

c,d e, d]abl|ab
c,d | c,d]abl|ab

LI (S| |G

Definition 1.26. [32| Let (R, ®,®) be a general hyperring and let K be a non-empty
subset of it. We say that K 1s a subhyperring of R if it satisfies the following conditions:
1. (K,®) 1s a subhypergroup of (R, ).
2. (K.®) is a subsemihypergroup of (R, ®).

Definition 1.27. 72/ Let (R,®,®) be a general hyperring and let [ be a non-empty
subset of it. We say that I 1s a left (right) hyperideal of R, if it satisfies the following
conditions:

1. (I,®) is a subhypergroup of (R, ®).

2. Forallxel,ae Ra®Gx CI(roaCl).

[ s a hyperideal 1f it 1s a left and right hyperideal.
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Every hyperring has two trivial hyperideals, the heart of an additive part of a hy-
perring w and a hyperring R.

Example 1.15. Notice that the subset {a, b} is a hyperideal of the hyperfield presented
in Example 1.14.

Definition 1.28. [32| Let R, and R, be two general hyperrings. A mapping ¢ from
(Ry,+,") to (Rs,®,®) is said to be a good (strong) homomorphism if for all a,b € R,

1. dla+b) = ¢a) B pb).

$(a-b) = ¢(a) © ¢(b).

DS

The H,— structures were introduced by Vougiouklis at the 4th AHA Congress in
1990 [69], as hypercompositional structures with weak associative hyperoperations.

Definition 1.29. (32| The hyperstructure (H,-) is an H,-semigroup if x-(y-z)N(x-y)-
> £ forallx,y,z € H. If also the reproduction axiom 1s valid, i.e., a-H = H-a = H,
for alla € H then (H,-) is an H,—group.

Definition 1.30. (32| A multi-valued system (R, &, ®) is an H,—ring if:

1. (R,) is an H,— group.
2. (R,®) is an H,— semigroup.

3. The multiplication ® weakly distributes with respect to the addition &, i.e., for all
a,b,ce R, (a®(bdc))N(a®bda®c) # 0 and ((adb)Oc)N(a®cdboe) # 0.

[t is important to recall here that the quotient of a group with respect to any of its
subgroups is a hypergroup, while the quotient of a group by any equivalence relation
gives birth to an H,—group [50]. A recently published overview of the theory of weak-

hyperstructures is covered in [70].

In the following we will recall the construction of three types of hyperrings, that we
will study in the fourth chapter. The first one leads to an H,— ring obtained from
a ring. This structure was principally studied by Spartalis and Vougiouklis [64], in

connection with homomorphisms and numeration.

Let (R, +,-) be a ring and P, and P, be non-empty subsets of R. The hyperopera-

tions:
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Py =x+y+Pand Py — x-y- Py forall x.y € R are called the P— hyperoperations
(68]. Let Z(R) be the center of the multiplicative group (R, ).

Theorem 1.12. [64] Let (R, +,-) be a ring and P, and P, be non-empty subsets of R.
IfOe Pand Z(R)N Fy # 0, then (R, P, P;) is an H,— ring, called the H, — ring
with the P— hyperoperations.

We finish this section by recalling the construction of the hyperring of the formal
series [31, 43]. Based on this, the structure of the set of polynomials over hyperring
was studied.

Let (R, +,-) be a general commutative hyperring.

[31] A formal power series with coeflicients in R is an infinite sequence (ag, aj, ay, . . ., Gy, - .

of elements a; in R. The set of all such power series is denoted by R|[[x]]. We say that
two power series (ag, @y, az,...,an,...) and (b, by, ba, ..., b,,...) are equal if and only

if a; = b; for all indices i.

Let define on R[[z|| the addition by

(a0aalﬁ dp, ..., QAn, - - ) =) (b0>bl>b2> s >b'n.:~ bt ) =

{(CO, E141C85= e 5 By .),(";\. € a, + bk}

and the multiplication by
(aoa @y, adz2,..., s .. ) ®© (bo, bl, b2, ce ,E)”_. iriva ) =

{(co,e1,€25. .. Cny.. ) 01 € Z a; - b;}

i+j=k

The structure (R[[z]],4,®) is a general hyperring. It is worth to recall that the
set of the polynomials R[x] with coefficients in R is a left superring, with the same
hyperoperations & and ® defined above. This means that (R[x],®) is a canonical
hypergroup, (R[z], ®) is a semihypergroup with 0 a bilaterally absorbing element and
the multiplication is weakly distributive on the left side with respect to the addition,
e, fogah) Cfoge fOh, for fig.h e Rx|

)
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1.2.1 Fundamental relations in hyperrings

Similar as for hypergroups, Vougiouklis intoduced the a*— relation, which is the small-
est equivalence relation such that the quotient set (the hyperring modulo the relation)
is a ring, and he was the first one who named such a relation fundamental. He also

investigated its relationship with the 3*— relation.

Definition 1.31. [32] Let (R, +,) be a general semihyperring (hyperring). We define
a as follows:

aab iff {a,b} Cu where w is a finite sum of finite products of elements from R.

This is a reflexive and symmetric relation, but generally not transitive [32]. The

transitive closure a* of the relation « is called the fundamental relation on R.

Let us denote by U the set of all the finite sums of products of elements of R, and
with a*(a) the fundamental class of a. Then [32]

aab iff Jz..... Zny1 € R with 2y =a,z,y; = b and

Uy, Uz, ... Uy € UV such that  {z, 2z} Cwy, for 1=1,...,n.

Theorem 1.13. (32| Let (R, +,-) be a hyperring. Then the relation o 1s the smallest
equivalence relation defined on R such that R/a* is a ming. The quotient R/a* 1s called
the fundamental ring.

1.3 Fuzzy sets and connections with hyperstruc-

tures

Fuzzy sets have been introduced by L.A. Zadeh in 1965 [71] and they represent the ex-
tension of the classical notion of a set. Any fuzzy set is characterized by a membership
function which assigns to every element a degree of membership. In the classical set
theory an element belongs or does not belong to the set, which means that the mem-
bership function is a binary function. More exactly, it is the characteristic function
of the given set, so it maps every element to 0 or 1, depending if the element doesn’t
belong or belongs to the set. In the fuzzy set theory, the membership function maps

every element to a number from the interval [0, 1].
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Definition 1.32. [32] Let X be a set. A fuzzy subset A of X is characterized by a
membership function jiy : X — [0, 1] which associates with each point x € X its grade

or degree of membership pa(x) € [0, 1].

Example 1.16. [38] On the set X of real numbers, consider one initial point a and one

final point ¢, while b represents one intermediate point, i.e., a < b < ¢. The membership

function p4(x) is defined as follows:

pa() = 4

0,
=L
b—
c—
c—

fa<xr<b

ifb<z<c

i&p

(S

0,

(1.5)

The membership function can be represented as in Figure 1.1. Because its triangular

form, the fuzzy set (X, ua(x)) is known as the triangular fuzzy number.

FIGURE 1.1: Triangular fuzzy number

Example 1.17. On the set X = N, let A =" the set of natural numbers closed to 10”.

This fuzzy set can be represented by its membership function iy :

[10—|

,u_q{:.r:) =1- T

, which quves:

pa(10) = 1, 04(9) = pa(ll) = 0.9, ua(7) = pa(12) = 0.8 and so on.

X — [0,1], where

Definition 1.33. (29| Let A, B be fuzzy subsets of X. Define the following operations:

AC B & pa(x) < pp(x),vVr e X.
A=B e us(x) = pup(x),vr € X.

C=AUB & pc(x) = max{ps(r).pplr)}.Vr e X.
C=ANB & uc(x) = min{uas(z),up(x)},ve € X.

;LAC(:L‘) =1- 1) (;r_),‘v’;r e X.

The connections between hyperstructures and fuzzy sets can be approached in three

ways. First, we can define crisp hyperoperations trought fuzzy sets, as it was done by

Corsini in [14]. The second approach are fuzzy hyperalgebras, which can be considered



CHAPTER 1. PRELIMINARIES 21

as the extensions of the concept of fuzzy algebraic structures. For example, let the
hypergroup (/,0) be a crisp hypergroup, and u be a fuzzy subset on it. We say that
the fuzzy set u is a fuzzy subhypergroup of (H, o) if every level set of the fuzzy set p
is a subhypergroup of (H,0) [29]. Recall that if u is a fuzzy subset of a set H, then
the level set of p, noted with p, defines as: j, = {x € H|u(x) > t}, where ¢ belongs to
[0, 1]. In [28], where Davvaz introduced the concept of fuzzy subhypergroups, he also
introduced the concept of the fuzzy H,—subgroup of an H,—group.

The third approach refers to fuzzy hypergroups, such that fuzzy hyperoperation
assigns to any two elements a fuzzy set. They were studied by Corsini, Zahedi, Davvaz
and many others. Here, the fuzzy hyperoperation associates to every pair of elements

a fuzzy set, instead of the non-empty subset.

1.3.1 Construction of join spaces using fuzzy sets

Let us explain in more detail the first approach involving the very important connection
between fuzzy sets and hyperstructures given by Corsini in [14]. With any fuzzy subset

defined on a non-empty set H, he associates a join spaces.

Theorem 1.14. [14] Let pu: H — [0, 1] be a fuzzy subset of H, where H is a nonempty
set. Defining

zoy={z€ H:pux)Apuly) < p(z) <ple)Vvuly)} (1.6)

The hypergroup (H, o) 1s a join space.

Conversely, Corsini defined a fuzzy subset associated with a hypergroupoid (H, o)
as follows [16]:

_oo Al
i) 2w)’
where A(u) = Y ix_l_a:’Q(“) = {(x,y) € H? : uw € xoy}.q(u) = |Q(u)|. For

(ry)EQ(u)

Q(u) = 0, by default we take p(u) = 0. We can interpret ji as the average of the
reciprocals of the sizes of the hyperproducts x o y containing u [29]. By associating a
fuzzy set i to the hypergroupoid as in formula 1.6, we obtain the join space (' H, o).
Using formula 1.6 once again, from ('H,0,) we get the associated join space (*H,o5)
and obtain a new membership function ji5. By this procedure we get a sequence of join

spaces ((*H.o;),j1;)i>) associated with H.
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The length of the sequence of join spaces associated with /1, i.e., the number of
non-isomorphic join spaces in sequence is called the fuzzy grade of the hypergroupoid
H. and the fuzzy set 1 is called the grade fuzzy set [29].

Definition 1.34. [13] A hypergroupoid H has the fuzzy grade m.m € N\ 0, and write
f.g.(H) = m if, for any i, 0 < i <, the join spaces *H and “"'H associated with H
are not isomorphic (where °H — H) and for any s,s > m,* H is 1somorphic with ™ H.

Let us show the above described procedure for a concrete hypergroup and calculate
its fuzzy grade.

Example 1.18. Let the hypergroupoid H = {a, b, ¢} be given with the following table:

ol a
alab ,

(1.7)
b|a a,b|bc
cla,cl|b

Let us now construct a new join space.
The hyperproduct a o b is equal to {* € H:pla) A u(b) < plz) < jila) V uu(b)}, which
is further equal to {z € H : £ < ji(z 5} = {a, b} Similarly, bo ¢ {z € H :
n(b) Aple) < p(z) < pb)viu(e)} =1z eH L<Qi(z) <2} ={abc} =
If we apply the same procedure for all other hyperproducts it gives to us the first join
space represented by the table

o) | a b

c
ab | a,c
b | ab|b H
c |ac| H |c

According to the definion of a join space, if a/bNe/d # 0 then aodnNboe # O for all
elements a,b,c,d € H. Indeed, a/b contains all elements x € H such that a belongs to
rob, giving a/b = {a,c}. On the other side, a/c contains elements {x € H :a € r oc}
which is equal to {a, b}, i.e. a/bNb/c = {a}. If we calculate aocNboc we get {a,c}NH

{a,c}, with {a,c} # 0 which proves that the above condition is satisfied. Analogously
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we show that the condition is satisfied for all other combination of elements, concluding

that the obtained structure represents the join space.

Now, we calculate using formula 1.6

11 3

(b)) = 57 m(e) = —

@) 21 15

[GON SN

and the second associated join space is represented by the table:

oy | a b c
H
¢ il (1.9)
b | H |b b,c
¢ |a,clbc]c

From here, we get

¥ ~ ~ 8
fia(a) = fia(b) = fia(e) = 7.

[t is clear now that the associated join space has the table:

ogla | b |c

H|H|H
(1.10)

b |H|H|H

c |H|H|H

Easily, one notices that any associated join space H,s > 4 is the same as *H, so the
fuzzy grade of the given hypergroup is 3, because the number of non-isomorphic join
spaces associated with H is 3.

Let us now define a fuzzy hyperstructure, i.e., the hyperstructure endowed with a
fuzzy hyperoperation. In [60], Sen and Ameri gave the definition of a fuzzy semihyper-

group.

Definition 1.35. [60] Let S be a non-empty set. A fuzzy hyperoperation on S is a
mapping o 1 S x S — F(S), where F(S) is the set of all fuzzy subsets of S. The
structure (S, 0) s called a fuzzy hypergroupoid.

Theorem 1.15. [60] A fuzzy hypergroupoid (S, o) is called a fuzzy hypersemigroup if
forallab.ce S, (aob)oc —ao(boc) where for any fuzzy subset i of S there 1s

o v aot)(r) Apu(t)), 1 £
(a6 1)(r) tes((aot)(r) Ault)), of p# (L11)
0, otherwise
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o o)(e)e {vtes(u(c)A(coa)(r), oA L

0, otherunse

for all r in S.

Definition 1.36. [60] A fuzzy hypersemigroup (S,0) is called a fuzzy hypergroup if
roS =5o0xr = xg, forallx in S, where xs 1s the characteristic function of the set

S e,
1.if »€S8
yslej =4V ° (1.13)
0,if résS.

Example 1.19. [60] Let S = {a,b} and define the fuzzy hyperoperation as:

(aca)(a) = 0.1, (aca)(b) = 0.2, (aob)(a) = 0.2, (acb)(b) = 0.2, (boa)(a) = 0.3, (boa)(b) =
0.2, (aob)(b) =0.2,(bob)(a) =0.7,(bob)(b) = 0.8.

Let us check whether the hyperproduct (a0 a) o a is equal to a o (aoa).

Here, ((aca)oca)(r) = Vies((aoa)(t) A (toa)(r)) =
((aca)(a) Afaca)(r))V ((aca)(b) A(boa)(r)).

This gives that ((aoa)oa) (a) =0.1v0.2 = 0.2, while ((aca)oa)(b) =0.1v0.2 = 0.2.
Similarly, (ao (aoa))(r) = Vies((aot)(r) A(aoca)(t)) =

((aca)(r) A(aca)(a))V ((aob)(r) A(aoca)(b)).

At the same way we conclude that (ao (aoa))(a) = 0.2 and (ao(aoa))(b) = 0.2,
which finally proves that (a o a)oa is equal to a o (a o a). The all other identities can
be proved in the similar way. The structure (S, o) is a fuzzy hypersemigroup.



Chapter 2
Reducibility in hypergroups

This chapter deals with the reducibility property in hypergroups. We introduce the
concept of the reducibility and examine the reducibility in certain types of hypergroups.

2.1 Reducibility in hypergroups

The concept of reducibility was introduced by James Jantosciak in 1990 at the Fourth
International AHA Congress [42]. He noticed that it may happen that the hyperoper-
ation does not distinguish between two elements, i.e., that two elements have the same
role with respect to the hyperoperation. He defined three equivalence relations in order

to claster elements with the same behaviour and called them fundamental.

The fundamental relations defined by Jantosciak [42] on an arbitrary hypergroup
are operational equivalence, inseparability and essential indistinguishability.

Definition 2.1. [42] Two elements x,y wn a hypergroup (H, o) are called:
1. operationally equivalent or by short o-equivalent, and write x ~, y, 1f xroa = yoa,
and aox =aoy, foranya € H;

2. wnseparable or by short i-equivalent, and write x ~; y, if, for all a,b € H, r €
aob<=yecaob;

3. essentially indistinguishable or by short e-equivalent, and write x ~. y, if they are
operationally equivalent and inseparable.

Remark 2.1. Although they have the same name, the fundamental relations defined by
Jantosciak must not be confused with the fundamental relations defined in the previous

25
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section, which are also called fundamental and connect classical algebraic structures
with hyperstructures.

Definition 2.2. [42] A reduced hypergroup has the equivalence class of each element
with respect to the essentially indistinguishable relation ~. a singleton, i.e., for any
x € H, there is x. = {z}.

As we can see from the previous definition, if the equivalence class of any element
xr € H contains no elements except x, the hypergroup is called reduced. Otherwise, we
call it a non-reduced hypergoup. Regarding the definition of a reduced hypergroup, we
have to take care that . = {x} does not mean that the equivalent classes with respect
to both, the operational equivalence and the inseparability are singleton. Moreover, it
can happen that neither these two equivalence classes is singleton. Let us suppose that,
for example, z, = {z,y} and z; = {y, z}. From here, it follows that z. = z,Nz; = {z}.

However, if the hypergroup H is not reduced, so there exist two elements which
belong to the same equivalence class, i.e., z. = y. = {x,y}, then it neccesarily implies
that z, = yo 2 {z,y}; 20 = 4 2 {z,y}.

In the same paper, Jantosciak defined a reduced form of a hypergroup, i.e., he found

a manner how to construct a new reduced hypergroup from the given one.

Proposition 2.1. [42] For any hypergroup (H,-), the quotient (H/ ~.,x) is a reduced
hypergroup and it 1s called a reduced form of the hypergroup H.

The quotient hypergroup H/ ~. contains equivalence classes x. with x € H where
TexlYe = {2e: 2 € TY}.

Proposition 2.2. [42] Let [ be a mapping from H onto a reduced hypergroup K, such
that x -y = f~'(f(x)f(y)), forallz,y € H. Then K = H/ ~, .

The above proposition characterizes a reduced form H/ ~. as the reduced hyper-
group from which is possible to reconstruct the hypergroup H. According to this, as
Jantosciak explained in [42], we can split the study of hypergroups into two parts, the
study of reduced hypergroups and the study of hypergroups with the same reduced
form.

The following proposition shows that a hyperoperation on H may be reconstructed
from the hyperoperation on H/ ~,. via the canonical mapping f : H — H/ ~. where
-y = f~Yf(x)f(y)). Also, the proposition enables us to determine all hypergroups
having the hypergroup H as their reduced form [42].
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Proposition 2.3. [42] Let H be a hypergroup and K be a set. Let [ be a mapping from
K onto H, such that x -y = f~Y(f(x)f(y)), for all z,y € H. Then K is a hypergroup
and the hypergroup H is reduced if and only if K/~. = H.

The following example explains the role of these fundamental relations.

Example 2.1. [42] Define on the set H = Z x Z*, where Z is the set of integers and
Z* = Z\ {0}, the equivalence ~ that assigns equivalent fractions in the same class:
(,y) ~ (u,v) if and only if xv = yu, for (z,y), (v,v) € H. Endow H with a hypercom-
positional structure, considering the hyperproduct (w,r) o (y,2) = (w= i#.ﬁﬂ.:,r_-,f,.;t':)w. [t
can be proved that the equivalence class of the element (x,y) € H with respect to all
three fundamental relations is equal to the equivalence class of (x,y) with respect to
the equivalence ~ . The equivalence class of an ordered pair (x,y) contains all order

u

pairs (u,v), such that the fractions 3 are equal to +. Therefore, H is not a reduced

hypergroup, but its reduced form is isomorphic with Q, the set of rationals [22].
In the following we give an example of a non-reduced hypergroup and its reduced
form.

Example 2.2. Let (H.0) be a hypergroup, where the hyperoperation ™ o” is defined
by the following table:

ole a c
e|e c|be
a b,c|e e (2.1)
b|bec|e a a
c|becle a a

Since the rows corresponding to the elements b and ¢ are exactly the same, then b ~, c.
Since it is obvious that the elements b and ¢ occur together in each hyperproduct, we
conclude that b; ¢; = {b,c}, which finally gives that b, = ¢, = {b,c}. However,
e. = {e} and a. = {a}. Since there exists an element such that its equivalence class is
not a singleton, the hypergroup is not reduced.

Let us construct the reduced form of the hypergroup H. According to Proposition 2.1,
the obtained hypergroup will be reduced.

For ease of presentation we will illustrate a reduced form via Cayley table, too.

K |e | a be

€e | €e | Qe | be

ae | Qe | be | €e

be be ée €e
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[t is easy to check that the hyperstructure (i',x), where K — H/ ~,, is associative
and that the reproducibility is satisfied. Thus, (H/ ~e,*) is a hypergroup and it is
obviously reduced.

As it is stated in Proposition 2.3, we can reconstruct a hyperoperation on H via the
mapping f: H — H/ ~. . Indeed, f~1(f(a)x f(b)) = f~Hacxb.) = f~1(e.) = e = aob.
Similarly we can verify the statement for all other hyperproducts x oy, where z,y € H.

In the following we give an example of a reduced hypergroup.

Example 2.3. Let (H,0) be a hypergroup, where the hyperoperation ” o” is defined
by the following table.

ola b c d

ala a a,b,c | ab,d

b|a a a,b,c | ab,d (2.3)
clabc|abec|abc|ecd

d|labd]|abd]|ecd a,b,d

One easily notices that a ~, b, because the lines (and columns) corresponding to a
and b are exactly the same, thereby: a, = b, = {a,b}, while ¢, = {c} and d, = {d}.
But, on the other side, each element in H has equivalence class containing exactly one
element with respect to the relation ~;, as well as with respect to the relation ~,
by consequence (H,o) is reduced. Here, a reduced form H/ ~. is isomorphic to the
hypergroup H.

In [24] Cristea et al. discussed about the regularity of the fundamental relations,
proving that the operational equivalence and essential indistinguishability are regu-
lar, while the inseparability is not regular. Also, they proved that in general none of
them is strongly regular. This means that the corresponding quotients modulo these

equivalences are not classical structures, but hyperstructures.

If we consider Example 2.3, we can easily show that the relation ~, is a regular
relation, but not a strongly regular relation. Since a ~, b, then the regularity of the
relation ~, would imply that for every w € I and for every x € w o a there exists
y € uo b such that x ~, y, and for every r € a o u there exists y € b o u such that
T ~, y. Obviosly, for any u € H, if x € uoa then x € wob, and it holds that z ~, 2.
Due to the commutativity of the hypergroup, the other relations from the regularity

definition also easily follow.
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However, the operational equivalence is not strongly regular. If we assume strongly
regularity of the relation ~, is , then a ~, b implies that: Vx € a o u,Vy € bo wu there
is x ~, y. Taking that x = a,u = ¢ and y = ¢, if follows that a ~, ¢, which is not
satisfied.

Example 2.4. Let H = {a, b, c} be the following hypergroup:

ol a b c

ala a,b,c|abc (2.4)
b |abc|bc b,c

c|labc|abc|ab,c

Notice that the elements b and c are essentialy indistinguishable, i.e., b ~; c¢. If we
suppose that the relation ~; is regular, we get: From ¢ ~; b it follows that for all u € H
and for all x € co u there exists y € bowu such that x ~; y. Taking that «w = b, then
for the element a which belongs to cob, there does not exist an element y in bo b, such
that a ~; y. Since bo b = {b,c}, indeed a ~; b and a ~; c. Thus, the relation ~; is not

a regular relation.

Let us show, at the end, that in general, the relation ~, is not a strongly regular

relation.

Example 2.5. Let H = {a, b, c} be the following hypergroup:

ol a b c
H
al|ab|ab (2.5)
b|ab|ab| H
c|H |H |c

[s it easy to see that the relation ~, is regular. Notice that the elements a and b are
the only elements in the hypergroup such that a ~, b. Strongly regularity would imply
that: For allu € H and Vx € aou,Vy € bow: x ~. y. Taking that u = ¢, the element
a belongs to a o ¢, the element ¢ belongs to b o ¢, but a ~, ¢. Thus, the relation ~, is

not strongly regular.
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2.2 Reducibility of hypergroups connected with the

binary relations

In this section we present some results proved by Cristea and Stefanescu in [23]. They
associated different hypergroupoids with binary relations defined on a set H. Also,
they investigated the reducibility in hypergroups associated with the binary relation.
The authors gave necessary and sufficient conditions for hypergroupoids in order to be
reduced hypergroups. Further, they gave conditions such that hypergroups associated

with the intersection, union and composition of relations are reduced.

Rosenberg has associated a partial hypergroupoid H, — (H, o) with a binary relation
p defined on a set H, where for any r,y € H. as [59]
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e}, xou=L,UL,.

Let p be a binary relation defined on a non-empty set H. Denote by L? the set
containing all elements z such that xpz, ie., L2 = {z € H : (x,z) € p}. Similarly,
Rf={z€ H:(z,z) € p}. If pand ¢ are two different binary relations on H, then:

L = {ze H:(x.2)€pnd}=LNL°

R~ {z2e€ H:(z,x)€pndt = RENRS
M e H:(x.2) e pUd} = LEULS
R = {z€ H:(z,x) € pUd} = REURS
L ={zeH:(x.2)epdt = {ze L teL’}
R® ={ze H:(z,x)epd}={ze R :te R’}
If, forany x € H,L? = L then p=24.
Proposition 2.4. /23] The hypergroupoid H, s reduced ff for all x.y € H such that

x # vy either L, # L, or R, # R,.

Let H, be a hypergroup associated with the binary relation p defined on H.

Proposition 2.5. [23] If p is an equivalence on H, then the hypergroupoid H, 1s a
reduced hypergroup if and only if p = Ay = {(x,x) :x € H}.
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Example 2.6. Let H — Z and the relation p is given on the set H with:
xpy Mt =y (modb).

[t is easy to check that the previous relation is an equivalence relation. But, according
to Proposition 2.5, the hypergroup H, associated with this relation is not reduced if
p# {(x,x) : x € H}. Indeed, if we set 50a = 100 a, where a € H then LsU L, =
Lo U L, which is obviously satisfied because the elements 5 and 10 belong to the
same equivalence class with respect to the relation p, having the same remainder after
dividing by 5. Similarly, the equality a o5 = a o 10 is satisfied for any a € H. Also, the
elements 5 and 10 appear in the same hyperproducts because if 5 € aob = L, U Ly,
i.e., bpa or H5pb, then certainly 10pa or 10pb, which means that 10 € a o b. We conclude
that the hypergroup H associated with the relation p is not reduced. If we choose the
relation ”is equal to” instead of the above defined equivalence relation, then it can be
easily checked that the given hypergroup is reduced.

Proposition 2.6. (23] If p is a non-symmetric quastorder on H, then the hypergroup
(H,,0) is reduced if and only if for any x # y. L, # L,.

Example 2.7. Let < be a quasiorder relation on H = R. Then, according to the
definition of a hypergroup (H,.o), the hyperproduct rox = L, = {z € H : xpz} =
{z € H:z <z}, ie., the hyperproduct z o x contains all elements greater or equal to
x. Here, for any two different elements x and y, the sets L, and L, are different, as
well. Proposition 2.6 states that such hypergroup (H,,o) is a reduced hypergroup.
Let us prove it on this particular example. Let us assume that r oa = y o a, for all
a € H. If equality holds for any a, then it is obviosly satisfied for any a € H, such that
a<x<y.Sincexoy = L,UL,, then the equality xoa = yoa gives that L, = L,
which further implies that x = y. Thus, ¥ ca = y o a for any a implies that x =y, i.e.,
t, = x for any r € R. Hence, z. = x for any x € H, which finally gives that (H,, o) is
a reduced hypergroup.

Proposition 2.7. [23] If p is a reflexwve, symmetric, non-transitive relation on H, such
that p* = H x H, then the hypergroup (H,, o) is reduced if and only +f L, # L, for all
x,y € H such that x # y.

Proposition 2.8. (23] Let p and 6 be two quasiorder relations on H. If the hypergroups
H, and H; are reduced then the hypergroup H,ns 1s reduced, too.

Proposition 2.9. (23] Let p and § be two binary relations on H with full domain and
full Tange such that p®> = p,6% = 6 and pd = dp. If the hypergroup H,s is reduced then
H, and H; are both reduced.
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In the following we present the new results related to the reducibility in hypergroups.

Proposition 2.10. Any subhypergroup (K, o) of a reduced hypergroup (H, o) is a re-
duced hypergroup.

Proof. Let a be the element from the set K. Since K is a subhypergroup, then K C
H. Then the element a belongs to the set H, as well, and since (H,0) is a reduced
hypergroup, then a. = {a} i.e., (K, o) is a reduced hypergroup, too. O

Remark 2.2. A subhypergroup of a non-reduced hypergroup can be reduced or not.

Example 2.8. Let the hypergroup (H,o) be given by the following table

°o|a b x Y

a|a b T,y | T,y
b |b a T,y | T,y
x|x,y | x,y|ab|ab
y|x,y|x,y|ab]|ab

The hypergroup (H, o) is non-reduced since x oc = yo ¢ for any ¢ € H and x and
y appear in the same hyperproducts. Thus, x ~. y and consequently, (H, o) is not a
reduced hypergroup. Let us note with K the subset {a,b} of the set H. Since (K, o) is
a hypergroup itself and K C H, then the hyperstructure (K, o) is a subhypergroup of
a hypergroup (H, o). It is easy to see that (K, o) is a reduced hypergroup.

In the following we show the interesting property of the reducibility, saying that the

surjective homomorphism preserves reducibility.

Proposition 2.11. Let ¢ be a good surjective homomorphism from the hypergroup
(R,+) to the hypergroup (T, ). If two elements are essential indistinguishable with
respect to the hyperoperation +, then the itmages of the same elements through ¢ are in
the essential indistinguishable relation with respect to the hyperoperation .

Proof. Let x and y be elements from R such that x + a = y + a, where a € R.
This gives that {¢(D)|l € x + a} = {p(k)|k € y + a}, so ¢(x + a) = ¢(y + a). From
here, ¢(x) & ¢(a) = ¢(y) & ¢(a). Denote ¢p(a) = b and ¢(x) = x1,¢(y) = y;. Thus,
x19b =1y, ®b. If the equality x +a = y+a holds for every a € H then the last equality
holds for all b € T since {¢(a)la € R} = T. Assuming a + x = y + x for all a € R,
similarly ¢(a) @ ¢(z) = ¢(a) & ¢(y) for all a € R. Hence, if x ~} y then ¢(x) ~% ¢(y).

Letx ~} y,i.e., x € a+bifand only if y € a+bfor all a,b € R. From this equivalence
we get that ¢(x) € {p()|l € a + b} if and only if ¢(y) € {p(k)|k € a + b}, so ¢(x) €
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¢(a +b) if and only if ¢(y) € ¢p(a +b). Since ¢ is a homomorphism, ¢(z) € ¢(a) & ¢(b)
if and only if ¢(y) € @(a) ® ¢p(b). Let ¢p(x) = x1,0(y) — y, and ¢(a) = a;,d(b) = by.
Since the mapping is surjective, a; & b, covers the whole set T. Hence, r; € a, & b
is equivalent with y, € a; @ by, for all a;,b; € T. Here, x ~} y implies ¢(z) ~7 ¢(y).
The definition of the essential indistinguishability relation, together with the above
implications give the proof of the claim. O

2.3 Reducibility in canonical hypergroups

In this section we study the reducibility of canonical hypergroups. After we investigate
the reducibility for an arbitrary canonical hypergroup, we introduce a special class of
canonical hypergroups, so called i.p.s. hypergroups. We present here some important
properties of these hypergroups, neccesary for the study of their fuzzy reducibility.

Theorem 2.1. Any canonical hypergroup is a reduced hypergroup.

Proof. Since any canonical hypergroup has a scalar identity 0 such that Ooxr = 200 = 2
for any x € H, then if we set aoxr = aoy for any a € H, by taking a = 0 we get:
0ox = 0oy, which implies that = y. Thus, 2, = {z} for all x € H, so obviously
r, = {a} for any x € H. Hence, H is a reduced hypergroup. O

Remark 2.3. In the previous theorem, since an arbitrary element has singleton equiva-
lence class with respect to the operational equivalence, then obviosly, it has a singleton
equivalence class with respect to the essential indistinguishability, but even more, it
holds that x, = {z} for all x € H, since two elements does not appear in the same
hyperproducts a o b, where a,b € H. Since x € 200, the element y belongs to the same
hyperproduct just if y = z,i.e., x €aobif and only if y € ao b holds only if z — .

Example 2.9. Let S = {—1,0, 1}, and the hyperoperation o is given by the following
table

o -110 1
—1|-1|-1| H
0 —-11]0 1

H 1

The hypergroup (H, o) is a canonical hypergroup. Indeed, 0 is a scalar identity, since
forallz € Hyz00 =0ox = z. Also, since 0 € 000 then 0~! = 0. Similarly, 0 € 1o (—1)
and 0 € —1 o1, and consequently, 17! = —1 and (=1)"! = 1. Thus, every element
has a unique inverse. At the and, let us check the last condition of Definition 1.9. If



CHAPTER 2. REDUCIBILITY IN HYPERGROUPS 34

0 € lo(—1), then —1 belongs to the sets 17'00 and 0o (—1)~!. Similarly, the condition
can be checked for the other hyperproducts.

Since the rows in the table are distinct, we conclude that z, = {z}, for z € {—1,0, 1}.
Hence z. = {z}, for any  in H, which gives that the given hypergroup is reduced.

The following proposition states that the canonical hypergroup modulo canonical
subhypergroup is a reduced hypergroup.

Proposition 2.12. Let (H, +) be a canonical hypergroup and N be an arbitrary canon-
tcal subhypergroup of H. Then the quotient H \ N is a reduced hypergroup.

Proof. The Proposition is the direct consequence of Proposition 1.1 and Theorem 2.1.
O

Now we will introduce a class of canonical hypergroups, called i.p.s. hypergroups.

An i.p.s. hypergroup is a canonical hypergroup with partial scalar identities [12].
[ts name, given by Corsini [12] comes from the Italian language, and the abbreviation
"i.p.s.” is derived from the ”identita parziale scalare”, which translated into English,
means partial scalar identity. We have to keep in mind that the notion of a partial
scalar identity and the notion of a identity in a hypergroup (H, o) must not be confused.
Recall that an element x € H is called a scalar, if [xoy| = |[yox| =1, for any y € H.
An element e € H is called partial identity of H if it is a left identity (i.e., there exists
xr € H such that r € eox) or a right identity (i.e., there exists y € H such that y € yoe)
[12]. Denote the set of all partial identities of H by I,. Besides, for a given element
r € H, a partial identity of x is an element u € H such that ¥ € rouUwox. The
element u € H is a partial scalar identity of v if ¥ € x o u implies that ¥ = o o u and
whenever r € wo x it follows that x — wox. For any element x, I, () denotes the set
of all partial identities of x, I,s (z) denotes the set of all partial scalar identities of x,
while Sc(H) denotes the set of all scalars of H. It is easy to see that the intersection
of the sets I,(x) and Sc(H) gives the set I,s(x).

Remark 2.4. Regarding the expression ”partial identity” we have to pay attention
on the term "partial”, that does not mean "left or right” (identity). An element u
is a partial wdentity is equivalent with the fact that u behaves partially as an identity
with respect to an element x. Thus, u is not a left/right (i.e., partial) identity for
the hypergroup H. Besides, an i.p.s. hypergroup is a commutative hypergroup, so the
concept of partial intended as left/right element satisfying a property (i.e. left/right
unit) has no sense. Therefore, we observe that an element u has the property of being
partial identity for x means that that it has a similar behaviour as an identity but only

with respect to  (and not all the elements), so a partial role of being identity.
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Let us recall now the definition of an i.p.s. hypergroup. All finite i.p.s. hypergroups
of order less than 9 have been determined by Corsini [10, 11, 12].

Definition 2.3. [12] A hypergroup (H,o) s called i.p.s. hypergroup, if it satisfies the
following conditions.

1. It 1s canonical, 1.e.,

e 1t 1s commutative;

e it has a scalar identity O such that Oox = x, for any x € H;

o cvery element x € H has a unique inverse v=' € H, that is0 € rox™!;

1

o it 1s reversible, so y € aor = xr €a” oy, foranya,x,y € H.

2. It satisfies the relation: for any a,x € H, if r Eaox, thenaocr = r.

The most useful properties of i.p.s. hypergroups are gathered in the following result.

Proposition 2.13. [12] Let (H,o) be an i.p.s. hypergroup.

1

1. For any x € H, the set x ox™" 15 a subhypergroup of H.

2. For any v € H\ {0}, we have: or x € Sc(H), or there exists w € Sc(H) \ {0}
such that uw € x o x~'. Moreover |Sc(H)| > 2.

3. If x € Sc(H), then L,s(x) contains just 0.
If x & Sc(H), then L (x) C Sc(H) Nz ox~! and therefore |Ls(x)| > 2.

Proposition 2.14. Let (H, o) be an 1.p.s. hypergroup. For any scalar w € H and for
any element x € H, there exists a unique y € H such that u € roy.

Proof. The existence immediately follows from reproducibility. For proving the unicity,

assume that there exist y,,y, € H,y, # vy, such that v € oy, N oy,. Then,

by reversibility, it follows that y,,y, € z~!

|lz='owu| = 1l and then yy =y =zl ow. O

o u. Since u is a scalar element, we get

Example 2.10. [12] Let us consider the following i.p.s. hypergroup (H, o) .

Hlol1 |2 |3
ool |2 |3
1 [1]2 [o3]1
2 [2]0,3]1 |2
3 13l1 |2 |o
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Here we can notice that 0 is the only one identity of H. In addition, Se(H) = {0, 3},
and 0 € Oowu only for u — 0, so 1,,(0) = {0}. Also, only for u — 0 there is 3 € 3o, thus
I,s(3) = {0}. (In general, if @ € Sc(H) then I,s(x) = {0}, according with Proposition
2.13.) Similarly, one gets I,(1) = I,(2) = {0,3} and since Sc(H) = {0, 3}, it follows
that /,(1) = I,4(2) = {0, 3}.

Note that, in an i.p.s. hypergroup, the Jantosciak fundamental relations have a

particular meaning, in the sense that, for any two elements there is
a~ob=a~be=a~bs=a=0 [22

By consequence, one obtains the following result.

Theorem 2.2. Any i.p.s. hypergroup is reduced.

Proof. This is the direct consequence of the Theorem 2.1. O

2.4 Reducibility in some cyclic hypergroups

Cyclic hypergroups have been introduced by De Salvo and Freni [36] and Vougiouklis
[66] independently. The notion of cyclicity is well known since it is an important. concept
in theory of algebraic structures. The hypergroup is called cyclic if we can obtain
whole hypergroup applying a hyperoperation on a specific element which represents a
generator of a hypergroup. Corsini did a synthesis of two approaches in his book [13]
and gave definitions using unambiguous terminology. After we recall the definitions we
will examine reducibility for certain types of cyclic hypergroups and present. examples

of some (non) reduced cyclic hypergroups.

Definition 2.4. [13] A hypergroup H is called cyclic with a generator x if py (H) is a
cyclic group generated from ¢y (x), where ¢y is a canonical projection.

Definition 2.5. [13] A semihypergroup is called cyclic if there exists h € H such that
Yr € H dn € N such that x € h®. We call h the s-generator of H. A hypergroup 1s
called s-cyclic if it is a cyclic semihypergroup.

Definition 2.6. [66] A hypergroup (H.o) is called a single-power cyclic hypergroup if
there exists h € H and s € N such that H = hUh?U- - - h*U- -+ and hUR'UR?U- - h™~! C
h™ for every m € N. The smallest power s for which formula H = hUh*U---h*U---
s valid s called a period of h.
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Proposition 2.15. The only single-power, non-reduced cyclic hypergroup of order two
15 the total hypergroup.

Proof. Let H be a hypergroup of order two, where H = {a,b}. If we suppose that
aox =box, and xoa = xob forall x € H and if a®> = H then it holds that
aoa=boa= H. Also, boa = bob which implies that bob = H. Similarly, ac b= H.
Thus, H is a total hypergroup. O

Example 2.11. Let H be a hypergroup given by the following table

e} (4}
H|b (2.6)
blb |a

The hypergroup (H, o) is a single-power cyclic hypergroup and it is easy to see that it
is a reduced hypergroup.

Proposition 2.16. Let H be a commutative single-power cyclic hypergroup of period
2, such that all its elements are generators, with |H| = 3. Then the hypergroup H is
not reduced only if it is a total hypergroup.

Proof. Let H = {a,b,c} and a® = b*> = ¢ = H. In order to be a non-reduced hyper-
group, the equivalence class of at least one element has to be a non-singleton set. Let
us suppose that @. = b, = {a,b}. This means that a ~, b, which obviosly implies that
aoa =aob = H. Due to the commutativity there is boa = H. In order to make
elements a and b be operationally equivalent, it must be valid that aoc = bo c. Now
we will consider all possible options for the hyperproduct aoc="boc.

If aoc = boc = a, then due to the associativity it is valid that (aoc)oc = ao(coc).
Since ao(coc) =ao H = H, then (aoc)oc=aoc= H which contradicts with the

assumption.

Similarly, taking that aoc = boc = b, and using that (boc)oc = bo(coc) = boH = H
we get that a oc = H, which is false.

At the end, if aoc = boc = ¢, using the associativity rule for b o (b o c), we again

get a contradiction.

The only remaining options for this hyperproduct are the sets: {a,b},{a,c}, {b,c}.
We won’t consider the last two, because then it would hold that a ~; b, which con-
tradicts with the assumption that a ~. b. Hence, the only possible option is that
aoc=boc={a,b}, but such a structure is not a hypergroup since the associativity
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rule is not satisfied. Namely, (aoc)oec = ao(coc), but the left side of equality is equal
to {a,b}, while the right side is equal to H. The proof is analogous if we assume that
a ~, cor b~ c. We conclude that the only hypegroup which satisfies the conditions
of the Proposition and it is non-reduced, is the total hypergroup. O

Notice that in the case when |H| = 4 the previous Proposition doesn’t hold.

Example 2.12. Let the hypergroup is given by the following table.

ola |[b |c |d
a|H|H|d | H
b| H| H|d | H (2.7)
cld |d |H|H
d H|H|H|H

The hyperstructure given by the above table is a commutative single-power cyclic hy-
pergroup. Also, every element of I is a generator with the period 2. Notice that the
elements a and b appear in the same hyperproducts, which gives that a ~; b. From the
table we can see that aoxr = boxr and xoa = xob, for any r € H. Hence, x ~, y.

Therefore the hypegroup (H, o) is not a reduced hypergroup.

Now we will present an example of an infinite single-power hypergroup and study
its reducibility.

Example 2.13. Let I be an open interval I = (0,1) and let the hyperoperation be
given by: axb =la-b)<« = {r €l :a-b <z} In [55 it has been proved that
the structure (I,«) is a single power cyclic hypergroup with an infinite period for an
arbitrary a € I. Let us prove that the hypergroup is reduced.

Let a and a, be elements from I such that aob — a,ob for all bin /. Then [a-b)< =
[a; - b)<, ie, {x iz > ab} = {x : ¥ > a,b}, which is fulfilled just in the case when
a-b = a,-b Thus, a = a,. Hence, for all a € I it holds that a, = {a}, and thus
a. = {a}, for all a € I. Therefore, (I,«) is a reduced hypergroup.

In the following, we will show examples of hypergroups which are join spaces and

are reduced hypergroups.

Example 2.14. Let p be a reflexive and symmetric relation on H. Let us consider the
hyperoperation on H given with:

Y(z,y) € H ,xox = Ly, x0oy = L, U L, ,where L,={ze€ H:(x,z2) € p}.
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In [48], L. Loreanu has proved that the hyperstructure (H,o) is a join space. As we
have already seen at the beginning of the chapter, this hyperoperation defined above
was introduced by Rosenberg. Let the relation p be given on the set H = {z,vy, 2z}
with:

p={x2),(y,9),(2,2),(x,2),(2,7),(y,2), (z,9)}.

It is easy to check that the relation p is reflexive and symmetric. Using the definition of
the hyperoperation ”o” we get that roy = roz — yoz — H, while zox = {x, 2}, yoy =
{y,z} and z 0 z = H. The hypergroup (H, o) is a reduced hypergroup, since we notice

that arbitrary two elements from H are not operationally equivalent, nor inseparable.

Example 2.15. Let V be a vector space over an ordered field F. If a.b € V we can
define: aob = {Aa+pub: A >0,u>0,A+p =1}, then (V,0) is a join space, called an
affine join space over F' [32].

In the following we prove that (/, o) is a reduced hypergroup.

Let a and b be two arbitrary elements from V such that a ~, b, i.e., aoxr = box
for all € V. Using the definition of the hyperoperation ” o ”, and taking that x = a
we get: aoa = boa. Thus, {da+pa: A >0,u >0 A+pu=1} ={Xb+pua: >
0,0 > 0, A4+ p = 1}. Since the first set contains just the point a, it will be equal to
the segment [a, b just in the case when a = b. Thus, a ~, b implies a = b. From here,
a. = {a} for all a € V. i.e., H is a reduced hypergroup.

2.5 Reducibility in complete hypergroups

In this section we recall a very important class of hypergroups, so called complete
hypergroups. We give the definition of a complete hypergroup and we also describe a
way how to construct different complete hypergroups. In order to study the reducibility
in complete hypergoups, we introduce a certain equivalence relation in order to identify
elements which are in the same equivalence class with respect to the relation ~. . Let
(H.o) be a proper complete hypergroup (i.e. H is not a group). Define now on H the

equivalence 7 ~ 7 by:
xr ~ y <= 3Jg € (Gsuch that 2,y € A,. (2.8)

Proposition 2.17. On a proper complete hypergroup (H, o) , the equivalence ~ in (2.8)
15 a representation of the essentially indistinguishabulity equivalence ~. .

Proof. By Theorem 1.11, one notices that, for any element x € [, there exists a
unique g € (. namely g¢., such that x € A, . First, suppose that z ~ y, i.e., there
exists g, = g, € (G such that r,y € A,,. For any arbitrary element a € H, we can say
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that a € A,,, with g, € (&, and by the definition of the hyperproduct in the complete
hypergroup (/1,0), there is xoa — Ay, — Ag,4, — yoa. (and similarly, aoxr — aoy,)
implying that  ~, y (i.e., x and y are operationally equivalent.) Secondly, for any
r€aob= Agg NA,, it follows that g.gs = g.; but g, = g,. soy € Ay,y, = aob.
Thereby, x belongs to the set aob if and only if y belongs to the same set, which means
that o ~; y (i.e. z and y are inseparable). We have proved that ~C~, .

Conversely, let us suppose that r ~. y. Since x and y are inseparable, i.e., x € ao b if
and only if y € a o b, we may write r,y € A,.4,. Therefore there exists ¢, = g, - g € G

such that .,y € A,,,s0z ~ y. a

Example 2.16. Considering Example 1.5, we notice that the equivalence classes of
the elements of H with respect to the equivalence ~ defined in (2.8) are: e = {e},
ay = ay = az = {aj,az,as}. If we consider ~., we again get the same equivalences

classes: e. = {e}, a) = {a1,az,a3} = az. = ase.

Theorem 2.3. Any proper complete hypergroup is not reduced.

Proof. Let (H, o) be a proper complete hypergroup (meaning that it does not coincides
with a group). Then there exists at least one element g in (i such that |4,| > 2. From

here we conclude that there exists elements a and b, in H with a # b, such that a ~ b.
Thence, a ~. b which directly proves non-reducibility of (H,o). O

The following example is an example of a complete hypergroup which is generated

by the non-commutative group of quaternions.

Example 2.17. Let (H, o) be a hypergroup represented by the following Cayley table:

H | a a; a; [ as as ar ag ag Qo an a; a3

a | q,Q a, Q; as, Q4 Qas, Q4 Qs Q5,Q7,Q8 | Q5,Q7,Q8 | Q5,Q7,Q8 | Qg Qo a, ar a1, a3

g | &, Q a, Q a3, Qg a3, Qs Qs,Q7,Q8 | Q6,Q7,Q8 | Q5,Q7,Q8 | Qg Qo a, a2 Qa, a2 a3

a3 | a3, qq Qas, Qq a, Q; a, Q; Qs,Q7,Q8 | Qs Qs Qs Qo Qg a3 a3 a, Qe

A | Q3,4 a3, Qg a, Q a, Q Q,Q7,Q8 | Qs Qs Qs Qo Qg a3 a; a, Qe

Qas | Qs Qs s,Q7,Q8 | Q5,Q7,08 | Q3,04 a, Q a, Q Qa,Q; a), Q1 a3 Qo Qo Qg

A5 | Q5,Q7,08 | A6, Q7,Q8 | Qs Qs a, Q; a3, Qq a3, Qq a3, Q4 a3 a, Q2 Qg Qg Qo

Qr Qg,Q7,Q8 | Qs,Q7,Q8 | Qs Qs Q),Qy Qsz, Qq Qz, Qq Qiz,Qq [OK] Q)), Q)2 Qg Qg Qo

Az | Q5,Q7,08 | A6, 7,Q8 | Qs Qs a, Q; a3, Qq a3, Qq a3, Q4 a3 a, Q2 Qg Qg Qo

Q3 | Qg Qg Qo Qo a3 a, Qe a, Qe a, Qe Qas, Q4 a, Q; Qs Qs Qs,Q7,Q8

Qo | Qo Qo Qg Qg an, ar a a3 a3 a, Q Qz, Q4 QA6,Q7,Q8 | 6, Q7,Q8 | Qs

Q) | Q)),Qp52 Qa), Q) a3 a3 Qa3 ao Qo Q0 Qs,Q7,Q8 | Qs Qas, Qq Qas, Q4 a, Q;

Q2 | @1, Q)2 a, a2 a3 a3 Qi Qo Qo Qo Qs,Q7,Q8 | Qs a3, Qs a, Q

Q3 | Q13 a3 a), Q) Qa), Q5 Qo Qg Qg Qg Qs Qas,Q7,Q8 | A1, Q2 Q), Q; a3, Qq
(2.9)

The hypergroup (H, o) is complete, where the group GG = Qg = {F1,Fi, Fj, Fk}. The
hypergroup H can be partitioned into disjoint sets: Ay = {e}, 4 = {a;, a2}, A_| =
{as,aq}, A = {as}, A_i = {as,a7,a5}, A; = {ao}, A—; = {aw}, A = {ai1,a12}, Ay
{a3}, and H = Ugec A,
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Remark 2.5. The conjugable subhypergroup of a complete hypergroup is not a re-
duced hypergroup. It is known that every conjugable subhypergroup of a hypergroup
is a complete part [35]. According to Theorem 2.3, two arbitrary elements from the
complete part are in the same equivalence class with respect to the essential indistin-
guishability relation, hence any conjugable subhypergroup of a complete hypergroup
(which must be a complete part) is not a reduced hypergroup, too.

2.6 The reducibility in Corsini hypergroups

In this section we study the reducibility in Corsini hypergroups. We determine nec-
essary and suflicient conditions for Corsini hypergroups to be reduced and study the
reducibility in the productional hypergroups containing Corsini hypergroups.

Proposition 2.18. Let (H,0) be a Corsint hypergroup. If there exist some different
elements x,y in H such that rox = y oy, then the hypergroup (H,o) s not reduced.

Proof. Let x.y be arbitrary elements in H such that x # y and xox = yoy. It is easy
to see that roa = yoa, forany a € H, sinceroa=roxUaoca=yoyUaoa =yoa.
Using the commutativity, we obtain that e« ox = a oy, for any a € H. Hence, x ~, v.
Let ¥ € cod, with x,¢,d € H. Then x € cocUd od, which implies that x € coc or
x € dod. Since (H, o) is a Corsini hypergroup, the previous implication gives ¢ € rowr
ordée€ rorandc € yoyord € yoy. Using the same property, we conclude that
y € cod. Similarly, one proves the converse implication. Therefore, z ~; y. Hence, the

hypergroup (H, o) is not reduced. O

As a consequence of Proposition 2.18, we obtain the following results. It gives

necessary and sufficient condition for the Corsini hypergroup to be reduced.

Proposition 2.19. A Corsint hypergroup (H, o) with at least two different elements s
reduced if and only if rex # yoy, forallz,y € H.

Proof. The contraposition of Proposition 2.18 directly gives the first direction. Suppose
now that roxr # youy, for all x,y € H. Take two arbitrary elements z # y from H.
We will prove that roa = yoa, for all a € H, just in case when x = y. Assume that
roa = yoa, forall a € H. From here, we have xox = yox, which gives rox = yoyUzox.
The last equality is possible only if yoy C zox. Similarly, since x oy = yoy, it follows
the other inclusion x ox C yoy. Therefore, zoa = yoa is equivalent with xox = youy.

which contradicts the hypothesis. Hence, two arbitrary elements x and y,x # y are
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not operationally equivalent, thus z. — {z} for all x € H, meaning that H is a reduced
hypergroup. 4

Proposition 2.20. Any B-hypergroup is reduced.

Proof. This immediately follows from Proposition 2.19, since in a B-hypergroup there
is zxox = {x}, for all elements x. O

The following example shows Cayley table of a B— hypergroup (H, o), where | H| = 3.

Example 2.18.

o
RS
N

x,y | x,2

T
vyl Ty ly Y,z
Z

In the following example we present a reduced Corsini hypergroup, which is not a
B-hypergroup.

Example 2.19. On theset H — {a, b, ¢} define the hyperoperation ”o” by the following
table:

ola |b c

a| H| H | H
b| H |ab| H
c|H|H |a,c

Since all the rows in the table are different, it follows that z, = {z} for any x € H.
which clearly implies the reducibility of the hypergroup.

The following theorem determines whether the direct product of hypergroups is
reduced, or not.

Theorem 2.4 ([23]). The hypergroup (H x H, Q) s reduced if and only if the hyper-
groups (H,o0y) and (H,o,) are reduced.

Example 2.20. Let H — {a,b} and the hyperoperoperations ¢, and o, are given with
the tables

b opla | b
H|H a
b |H|H b |H|b

O]

Q

o
T
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The hyperproduct of the hypergroups (H,o;) and (/,o,) is the productional hyper-
group (H x H, ) given by the following table

o) X 03 | (a,a) (a,b) (b, a) (b,b)

(a,a) {(a,a),(b,a)} | Hx H {(a,a),(b,a)} | Hx H

(a,b) Hx H {(a,b),(b,b)} | Hx H {(a,b), (b,b)}
(b, a) {(a,a),(b,a)} | Hx H {(a,a),(b,a)} | Hx H

(b, b) HxH {(a,b),(b,b)} | Hx H {(a,b), (b,b)}

Since the total hypergroup is not-reduced, according to Theorem 2.4, the productional
hypergroup is not reduced, too. Indeed, (a,a) ~. (b, a) and (a,b) ~¢ (b, b) which implies
the non-reducibility of (H x H, o, x o3).

Proposition 2.21. The direct product of B-hypergoups is reduced.

Proof. Since any B-hypergroup is reduced, this is a direct corollary of Theorem 2.4. O



Chapter 3
Fuzzy reducibility in hypergroups

The following chapter is dedicated to the study of the fuzzy reducibility. Here we
consider crisp hypergroups endowed with a fuzzy set and investigate their reducibility.
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